• Treffer 6 von 7
Zurück zur Trefferliste

Learning under differing training and test distributions

Lernen mit unterschiedlichen Trainings- und Testverteilungen

  • One of the main problems in machine learning is to train a predictive model from training data and to make predictions on test data. Most predictive models are constructed under the assumption that the training data is governed by the exact same distribution which the model will later be exposed to. In practice, control over the data collection process is often imperfect. A typical scenario is when labels are collected by questionnaires and one does not have access to the test population. For example, parts of the test population are underrepresented in the survey, out of reach, or do not return the questionnaire. In many applications training data from the test distribution are scarce because they are difficult to obtain or very expensive. Data from auxiliary sources drawn from similar distributions are often cheaply available. This thesis centers around learning under differing training and test distributions and covers several problem settings with different assumptions on the relationship between training and testOne of the main problems in machine learning is to train a predictive model from training data and to make predictions on test data. Most predictive models are constructed under the assumption that the training data is governed by the exact same distribution which the model will later be exposed to. In practice, control over the data collection process is often imperfect. A typical scenario is when labels are collected by questionnaires and one does not have access to the test population. For example, parts of the test population are underrepresented in the survey, out of reach, or do not return the questionnaire. In many applications training data from the test distribution are scarce because they are difficult to obtain or very expensive. Data from auxiliary sources drawn from similar distributions are often cheaply available. This thesis centers around learning under differing training and test distributions and covers several problem settings with different assumptions on the relationship between training and test distributions-including multi-task learning and learning under covariate shift and sample selection bias. Several new models are derived that directly characterize the divergence between training and test distributions, without the intermediate step of estimating training and test distributions separately. The integral part of these models are rescaling weights that match the rescaled or resampled training distribution to the test distribution. Integrated models are studied where only one optimization problem needs to be solved for learning under differing distributions. With a two-step approximation to the integrated models almost any supervised learning algorithm can be adopted to biased training data. In case studies on spam filtering, HIV therapy screening, targeted advertising, and other applications the performance of the new models is compared to state-of-the-art reference methods.zeige mehrzeige weniger
  • Eines der wichtigsten Probleme im Maschinellen Lernen ist das Trainieren von Vorhersagemodellen aus Trainingsdaten und das Ableiten von Vorhersagen für Testdaten. Vorhersagemodelle basieren üblicherweise auf der Annahme, dass Trainingsdaten aus der gleichen Verteilung gezogen werden wie Testdaten. In der Praxis ist diese Annahme oft nicht erfüllt, zum Beispiel, wenn Trainingsdaten durch Fragebögen gesammelt werden. Hier steht meist nur eine verzerrte Zielpopulation zur Verfügung, denn Teile der Population können unterrepräsentiert sein, nicht erreichbar sein, oder ignorieren die Aufforderung zum Ausfüllen des Fragebogens. In vielen Anwendungen stehen nur sehr wenige Trainingsdaten aus der Testverteilung zur Verfügung, weil solche Daten teuer oder aufwändig zu sammeln sind. Daten aus alternativen Quellen, die aus ähnlichen Verteilungen gezogen werden, sind oft viel einfacher und günstiger zu beschaffen. Die vorliegende Arbeit beschäftigt sich mit dem Lernen von Vorhersagemodellen aus Trainingsdaten, deren Verteilung sich von derEines der wichtigsten Probleme im Maschinellen Lernen ist das Trainieren von Vorhersagemodellen aus Trainingsdaten und das Ableiten von Vorhersagen für Testdaten. Vorhersagemodelle basieren üblicherweise auf der Annahme, dass Trainingsdaten aus der gleichen Verteilung gezogen werden wie Testdaten. In der Praxis ist diese Annahme oft nicht erfüllt, zum Beispiel, wenn Trainingsdaten durch Fragebögen gesammelt werden. Hier steht meist nur eine verzerrte Zielpopulation zur Verfügung, denn Teile der Population können unterrepräsentiert sein, nicht erreichbar sein, oder ignorieren die Aufforderung zum Ausfüllen des Fragebogens. In vielen Anwendungen stehen nur sehr wenige Trainingsdaten aus der Testverteilung zur Verfügung, weil solche Daten teuer oder aufwändig zu sammeln sind. Daten aus alternativen Quellen, die aus ähnlichen Verteilungen gezogen werden, sind oft viel einfacher und günstiger zu beschaffen. Die vorliegende Arbeit beschäftigt sich mit dem Lernen von Vorhersagemodellen aus Trainingsdaten, deren Verteilung sich von der Testverteilung unterscheidet. Es werden verschiedene Problemstellungen behandelt, die von unterschiedlichen Annahmen über die Beziehung zwischen Trainings- und Testverteilung ausgehen. Darunter fallen auch Multi-Task-Lernen und Lernen unter Covariate Shift und Sample Selection Bias. Es werden mehrere neue Modelle hergeleitet, die direkt den Unterschied zwischen Trainings- und Testverteilung charakterisieren, ohne dass eine einzelne Schätzung der Verteilungen nötig ist. Zentrale Bestandteile der Modelle sind Gewichtungsfaktoren, mit denen die Trainingsverteilung durch Umgewichtung auf die Testverteilung abgebildet wird. Es werden kombinierte Modelle zum Lernen mit verschiedenen Trainings- und Testverteilungen untersucht, für deren Schätzung nur ein einziges Optimierungsproblem gelöst werden muss. Die kombinierten Modelle können mit zwei Optimierungsschritten approximiert werden und dadurch kann fast jedes gängige Vorhersagemodell so erweitert werden, dass verzerrte Trainingsverteilungen korrigiert werden. In Fallstudien zu Email-Spam-Filterung, HIV-Therapieempfehlung, Zielgruppenmarketing und anderen Anwendungen werden die neuen Modelle mit Referenzmethoden verglichen.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Steffen Bickel
URN:urn:nbn:de:kobv:517-opus-33331
Betreuer*in(nen):Tobias Scheffer
Publikationstyp:Dissertation
Sprache:Englisch
Erscheinungsjahr:2008
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:02.07.2009
Datum der Freischaltung:24.07.2009
Freies Schlagwort / Tag:Maschinelles Lernen; Multi-Task-Lernen; Selektionsbias; Verteilungsunterschied
Covariate Shift; Machine Learning; Multi Task Learning; Sample Selection Bias
RVK - Regensburger Verbundklassifikation:ST 302
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:CCS - Klassifikation: I.2.6 , I.5 , G.3 , H.2.8
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.