
Institut für Informatik

Arbeitsgruppe Maschinelles Lernen

Learning under Differing Training

and Test Distributions

Dissertation

zur Erlangung des akademischen Grades

“doctor rerum naturalium”

(Dr. rer. nat.)

in der Wissenschaftsdisziplin Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von

Steffen Bickel

Potsdam, den 22.07.2009

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2009/3333/
URN urn:nbn:de:kobv:517-opus-33331
[http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-33331]

Abstract

One of the main problems in machine learning is to train a predictive model from train-

ing data and to make predictions on test data. Most predictive models are constructed

under the assumption that the training data is governed by the exact same distribution

which the model will later be exposed to. In practice, control over the data collection

process is often imperfect. A typical scenario is when labels are collected by question-

naires and one does not have access to the test population. For example, parts of the

test population are underrepresented in the survey, out of reach, or do not return the

questionnaire. In many applications training data from the test distribution are scarce

because they are difficult to obtain or very expensive. Data from auxiliary sources

drawn from similar distributions are often cheaply available.

This thesis centers around learning under differing training and test distributions

and covers several problem settings with different assumptions on the relationship be-

tween training and test distributions—including multi-task learning and learning under

covariate shift and sample selection bias. Several new models are derived that directly

characterize the divergence between training and test distributions, without the inter-

mediate step of estimating training and test distributions separately. The integral part

of these models are rescaling weights that match the rescaled or resampled training

distribution to the test distribution. Integrated models are studied where only one op-

timization problem needs to be solved for learning under differing distributions. With

a two-step approximation to the integrated models almost any supervised learning al-

gorithm can be adopted to biased training data.

In case studies on spam filtering, HIV therapy screening, targeted advertising, and

other applications the performance of the new models is compared to state-of-the-art

reference methods.

iv

Zusammenfassung

Eines der wichtigsten Probleme im Maschinellen Lernen ist das Trainieren von Vorher-

sagemodellen aus Trainingsdaten und das Ableiten von Vorhersagen für Testdaten.

Vorhersagemodelle basieren üblicherweise auf der Annahme, dass Trainingsdaten aus

der gleichen Verteilung gezogen werden wie Testdaten. In der Praxis ist diese Annahme

oft nicht erfüllt, zum Beispiel, wenn Trainingsdaten durch Fragebögen gesammelt wer-

den. Hier steht meist nur eine verzerrte Zielpopulation zur Verfügung, denn Teile der

Population können unterrepräsentiert sein, nicht erreichbar sein, oder ignorieren die

Aufforderung zum Ausfüllen des Fragebogens. In vielen Anwendungen stehen nur sehr

wenige Trainingsdaten aus der Testverteilung zur Verfügung, weil solche Daten teuer

oder aufwändig zu sammeln sind. Daten aus alternativen Quellen, die aus ähnlichen

Verteilungen gezogen werden, sind oft viel einfacher und günstiger zu beschaffen.

Die vorliegende Arbeit beschäftigt sich mit dem Lernen von Vorhersagemodellen

aus Trainingsdaten, deren Verteilung sich von der Testverteilung unterscheidet. Es

werden verschiedene Problemstellungen behandelt, die von unterschiedlichen Annah-

men über die Beziehung zwischen Trainings- und Testverteilung ausgehen. Darunter

fallen auch Multi-Task-Lernen und Lernen unter Covariate Shift und Sample Selection

Bias. Es werden mehrere neue Modelle hergeleitet, die direkt den Unterschied zwis-

chen Trainings- und Testverteilung charakterisieren, ohne dass eine einzelne Schätzung

der Verteilungen nötig ist. Zentrale Bestandteile der Modelle sind Gewichtungsfak-

toren, mit denen die Trainingsverteilung durch Umgewichtung auf die Testverteilung

abgebildet wird. Es werden kombinierte Modelle zum Lernen mit verschiedenen

Trainings- und Testverteilungen untersucht, für deren Schätzung nur ein einziges Opti-

mierungsproblem gelöst werden muss. Die kombinierten Modelle können mit zwei Op-

timierungsschritten approximiert werden und dadurch kann fast jedes gängige Vorher-

sagemodell so erweitert werden, dass verzerrte Trainingsverteilungen korrigiert werden.

In Fallstudien zu Email-Spam-Filterung, HIV-Therapieempfehlung, Zielgruppenmar-

keting und anderen Anwendungen werden die neuen Modelle mit Referenzmethoden

verglichen.

vi

Acknowledgements

First of all, I would like to thank my supervisor Tobias Scheffer for his invaluable

support and guidance. He was a great source of inspiration and motivation. I grate-

fully acknowledge funding from the German Science Foundation DFG. I thank Michael

Brückner and Jasmina Bogojeska for the fruitful collaboration. I owe my basic biomed-

ical knowledge to Jasmina. Sincere thanks to Thomas Lengauer who gave me the op-

portunity to evaluate my algorithms on data from HIV treatment histories collected for

the EuResist project. I learned a lot from our industry collaborations with Strato AG

and nugg.ad AG. This collaboration motivated our work on spam filtering and targeted

advertising. It was inspiring to supervise the diploma thesis of Barbara Pogorzelska and

the student project of Christoph Sawade. Under my supervision Barbara elaborated

my ideas for the nested Gaussian process model.

I am grateful to Michael Brückner, Laura Dietz, Barbara Pogorzelska, Peter Haider,

and Barbara Mai for proofreading (parts of) this thesis. I also thank Matthias Hein for

helpful discussions. I greatly appreciate the support of colleagues and student assistants

at Humboldt-Universität zu Berlin and at Max-Planck-Institut in Saarbrücken: Ulf

Brefeld, Isabel Drost, Michael Brückner, Laura Dietz, Peter Haider, Uwe Dick, Sascha

Schulz, Rolf Schimpfky, Barbara Pogorzelska, Thoralf Klein, and Christoph Sawade. I

enjoyed numerous discussions with them. Our Christmas workshops always were a lot

of fun and gave me the opportunity to improve my snowboarding skills and to collect

some bruises.

Last but not least, I owe a lot to the love and support of my parents.

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1

1.1 Differing Distributions: Motivating Examples 1

1.2 Contributions . 5

1.3 Own Previously Published Work . 7

1.4 Outline . 9

2 Learning Predictive Models from Data 11

2.1 Predictive Modeling by Loss Minimization 11

2.2 Empirical Regularized Loss and IID Assumption 12

2.3 Violation of IID Assumption: Covariate Shift and Multi-Task Setting . . 13

3 Learning under Covariate Shift 15

3.1 Covariate Shift vs. Sample Selection Bias and Propensity Scoring 16

3.1.1 Sample Selection Bias . 16

3.1.2 Propensity Scoring . 18

3.2 Compensation of Covariate Shift by Loss Rescaling 19

3.3 Discriminative Learning under Covariate Shift 20

3.3.1 Integrated Model . 21

3.3.2 Maximum A Posteriori Parameter Inference 22

3.3.3 Label Likelihood and Discriminative Weighting Factors 23

3.3.4 Optimization Problem for Integrated Model 24

3.3.5 Primal and Kernelized Learning Algorithm 26

3.4 Convexity Analysis and Solving the Optimization Problems 27

3.5 Two-Stage Approximation to Integrated Model 29

3.6 Kernel Mean Matching and KLIEP . 31

x

3.6.1 Kernel Mean Matching . 31

3.6.2 KLIEP . 35

3.7 Parameter Tuning . 36

3.8 Empirical Results . 37

3.8.1 Reference Methods and Experimental Setup 37

3.8.2 Spam Filtering . 38

3.8.3 Text Classification . 40

3.8.4 Landmine Detection . 40

3.9 Conclusion . 41

4 Multi-Task Learning 43

4.1 Problem Setting . 44

4.2 Hierarchical Bayesian Learning . 44

4.2.1 Hierarchical Bayesian Kernel Learning 46

4.2.2 Hierarchical Bayes for Taxonomy Classification 49

4.2.3 Hierarchical Bayes with Gaussian Processes 52

4.2.4 Nested Hierarchical Bayes with Gaussian Processes 53

4.3 Overview on other Multi-Task Models 55

4.4 Multi-Task Learning by Distribution Matching 56

4.4.1 Definition of Rescaling Weights 57

4.4.2 Discriminative Formulation of Weights 58

4.4.3 Logistic Model for Weights . 59

4.4.4 Weighted Empirical Loss and Target Model 60

4.5 Case Study: HIV Therapy Screening . 61

4.5.1 Data Sets and Prior Knowledge on Task Similarity 62

4.5.2 Reference Methods . 64

4.5.3 Experimental Setup . 65

4.5.4 Results . 65

4.6 Conclusion . 68

5 Multi-Task Learning under Covariate Shift 69

5.1 Problem Setting . 69

5.2 Multi-Task Learning under Covariate Shift by Distribution Matching . . 71

5.2.1 Definition of Rescaling Weights 71

5.2.2 Discriminative Formulation of Weights 72

5.2.3 Logistic Models for Weights . 73

xi

5.2.4 Weighted Empirical Loss and Target Model 75

5.3 Case Study: Targeted Advertising . 75

5.3.1 Data Sets . 76

5.3.2 Experimental Setup . 77

5.3.3 Results . 79

5.4 Conclusion . 79

6 Conclusions 81

A Newton Updates for Integrated Covariate Shift Model 85

B Optimality Conditions of Kernel Mean Matching 87

C EM Updates for Nested Hierarchical Bayes 89

Bibliography 93

xii

1 Introduction

One of the core problems in machine learning is to infer predictions for output variables

given input variables. In order to learn the relationship between inputs and outputs and

thereby learn a predictor, pairs of input and output variables are required—referred

to as training data. The inputs for which the output is unknown and predictions are

sought are called test data.

Intuitively, the predictions for the test data can only be successful if the training data

are representative for the true but unknown relationship between the inputs and outputs

in the test data. Most machine learning methods reflect this intuition by assuming that

training and test data are governed by the same probability distribution over input-

output pairs. If this assumption is violated many common theoretical guarantees and

bounds on the error of the predictions are no longer valid and standard models are not

expected to work well in practice.

In the statistics and econometrics communities the earliest work on learning from

differing training and test distributions date back to the second half of the last century.

Good (1965) explores hierarchical Bayesian models to share training data across related

learning tasks. In his Nobel Prize winning work, Heckman (1979) studies linear regres-

sion models for non-randomly selected training data. In recent years, the machine

learning community became more and more aware that the assumption of identical

training and test distributions is often violated in practice and started to advance this

field.

In this thesis we continue prior research in machine learning and statistics and study

and develop learning mechanisms that account for the divergence between the distri-

butions of training and test data.

1.1 Differing Distributions: Motivating Examples

Before we begin with the more technical parts of this thesis, we want give the reader

examples of application scenarios in which the assumption of identical training and test

distributions is violated. We will empirically study some of the these applications in

2 1 Introduction

the following chapters.

Training on Publicly Available Standard Corpora

Training data collected from publicly available standard corpora might not reflect

application specific distributions. For example, part-of-speech taggers trained on

standard newspaper corpora might not achieve good results on topics uncommon

in newspapers, such as poetry or scientific topics. Machine translation systems

are usually trained on parallel corpora. An abundant source of such parallel texts

are documents published by the EU commission but training on these texts will

bias the translation models towards government and EU specific topics. Similarly,

email spam filters trained on publicly available data sets might not work well on

user specific email distributions. We study this application in Section 3.8.2.

Similar Learning Tasks with Scarce Training Data

In many applications prediction models for several related tasks are to be learned

and the training data for most tasks are scarce. For example, in collaborative

filtering for movie recommendation, each user has its user-specific preference func-

tion. For a large fraction of users there are only a few preference labels available

and labeled data from other similar users might be considered as substitute.

Learning to predict the effect of combinations of drugs from past treatments can

be difficult when some drug combinations have been rarely used in the past.

In this case one might be tempted to share training data across similar drug

combinations (cf. Section 4.5).

Advertising campaigns are usually targeted to specific market segments that can

be characterized by sociodemographic features like age, gender, or marital status.

For advertising campaigns on the web it is desirable to predict sociodemographic

features of web users based on their surfing behavior in order to directly deliver

ads to the right users. For small web portals the number of training examples

for a predictor is scarce and as a remedy one could share training data across

similar web portals. But usually the distribution over web surfing behavior and

sociodemographic features is not identical across portals. We study this setting

in Section 5.3.

1.1 Differing Distributions: Motivating Examples 3

Collecting Data from Test Distribution is Expensive or in Some Other

Way Difficult

Labeled data from the test distribution are often difficult to obtain, very expen-

sive, or not accessible at all at training time but labeled data from similar data

sources are cheaply available. In landmine detection from radar images there can

be no labeled training data for a new geographic region because the collection of

labeled data is very dangerous and time consuming. Training data from another

geographic region might be available but different from the test conditions in the

new geographic region because of different lighting, vegetation, camera, or soil

conditions. We study landmine detection in Section 3.8.4.

In predictive modeling for drug screening, the collection of labeled data involves

the administration of a drugs to human beings. There might be drugs included in

such a prospective clinical study that have a high prior probability of not being

medicative for the disease at hand and risk the death of the patient. In this

case, ethical concerns may prevent the collection of a large number of training

data. Collection of training data from similar drugs, from other species, or from

in-vitro studies is usually much easier but exhibit the drawback that the training

distribution is different from the test distribution.

Collection of Training Data is Exposed to Selection Process

In some cases the collection of training data involves some selection or rejection

process that leads to diverging training and test distributions. For example,

in credit scoring the labeled training data is based on the customers that were

granted a loan in the past and are therefore exposed to a selection process. The

test data are all customers that ask for a loan.

If the target population (the test data) of some prediction problem are all citizens

of a country and the training data is collected by a survey, for example, an in-

ternet survey, parts of the population are underrepresented because some do not

use the internet at all or use it less frequently than other equal sized parts of the

population. The training distribution might even more diverge from the test dis-

tribution if questionnaires get ignored or refused by some potential participants.

We study learning from web surveys for targeted advertising in Section 5.3.

In clinical studies the effect of drugs on patients with a specific disease is analyzed

and modeled. The selection of patients for a study might not be random and

4 1 Introduction

therefore not representative for all patients with the disease. For example, if there

is a financial compensation for the participation in the study the results can be

biased towards patients with lower income and lower overall health conditions or

doctors might select patients that they like or dislike. In some studies only men

are selected because women can get pregnant and drop out of the study.

In active learning procedures the attention of a labeler is directed towards ex-

amples whose label is believed to convey a maximum of information in order to

minimize labeling costs. The resulting training data is governed by a selection

process, biased towards difficult examples.

Test Distribution Changes Over Time

Under topic drift the data distribution changes over time. If the training data

is collected before the test data, the training data may be out-dated and not

representative for the distribution of the test data. A typical example is learn-

ing recommendations, e.g., for movies or books, when the preference of a user

for certain genres, topics, actors, or authors changes over time. We study text

classification over time-dependent training and test data in Section 3.8.3.

Test Distribution is Purposefully Altered

In some applications the test distribution is purposefully altered by adversaries

in reaction to prediction models. A typical example is spam filtering where spam-

mers try to construct spam emails in a way that they get through the spam filter.

A filter directly trained from past spam and non-spam emails does not reflect the

distribution of future altered input to the filter. Similarly, in network intrusion

detection the training data capture past intrusions but future intruders will try

to find new ways to get access to the network.

Taxonomy Classification

Taxonomy classification is the task of assigning objects to nodes of a forest-

structured graph, for example, the assignment of webpages into a hierarchy of

topics or the assignment of words into a hierarchy of word senses for word sense

disambiguation. The edges in the graph encode topical similarities between nodes.

For learning of a taxonomy classifier training data or some other information on

the node models can be shared across similar nodes. This sharing is essential

1.2 Contributions 5

for nodes with only a few labeled training examples but the different data dis-

tributions of nodes need to be accounted for. A theoretical study of taxonomy

classification can be found in Section 4.2.2.

1.2 Contributions

The contributions of this thesis are spread across Chapters 3 to 5. In the following

we point out the contributions for each chapter separately. In Chapter 3 on Learning

under Covariate Shift the contributions are:

• We derive a discriminative expression for rescaling weights that match the rescaled

training distribution to the test distribution. With this expression density ratios

can be directly estimated without estimating the densities in the numerator and

denominator of the ratio separately. The latter procedure is prevalent in the liter-

ature (Shimodaira, 2000; Sugiyama and Müller, 2005) but unnecessarily difficult

because only the density ratio and not the separate densities are required. Es-

timating separate densities of potentially high dimensional distributions is prone

to estimation errors.

• We formulate the search for the parameters of the discriminative covariate shift

model and the parameters of the target model as one integrated optimization

problem. This complements the predominant procedure of first estimating the

covariate shift of the training sample, and then learning the predictive model on

a weighted version of the training sample.

• We derive a primal and kernelized variant of the integrated optimization problem

and provide Newton gradient descent updates.

• A convexity analysis reveals that the integrated optimization problem can be

convex, depending on the model type; it is convex for the exponential loss.

• A two-stage approximation to the integrated problem leads to a conceptually sim-

ple procedure that can be used to modify almost any standard predictive model

to account for covariate shift in the training data. The two-stage approximation

has the additional advantage that the optimization problems are convex for any

convex loss function.

• We derive a new interpretation for the existing kernel mean matching procedure

(Huang et al., 2007) that shows its relationship to our model. Until today, it has

6 1 Introduction

been unknown how to tune model parameters of a kernel mean matching model.

Our findings lead to an out-of-sample extension of kernel mean matching that

can be used for parameter tuning by cross-validation.

• Empirical results on spam filtering, text classification, and landmine detection

show that the integrated discriminative model significantly outperforms the iid

baseline and separate kernel density estimation. The performance of the two-stage

approximation is comparable to the integrated model.

• To our knowledge this is the first empirical study on learning under covariate

shift that uses real data with a natural divergence between training and test dis-

tribution. All previous studies artificially introduce covariate shift into standard

data sets.

The contributions in Chapter 4 on Multi-Task Learning are:

• We derive a new model for multi-task learning that is based on rescaling weights

which match the mixture distribution over all tasks to the distribution of a tar-

get task. The model is different from all existing multi-task models because no

assumption on the relationship between tasks is required.

• We show that the rescaling weights can be formulated as a discriminative ex-

pression and can be estimated with logistic regression. Prior knowledge on task

similarity can be encoded in a Gaussian prior on the model parameters. Once the

rescaling weights are estimated, a target model over reweighted data is trained.

• We derive a new nested hierarchical Bayesian model for Gaussian processes. The

model can be applied to multi-task settings with grouped tasks.

• We show that a popular multi-task model (Evgeniou and Pontil, 2004) becomes

a hierarchical Bayesian model by replacing the hinge loss with the logistic or

squared loss function.

• We point out that taxonomy classification is related to multi-task learning and we

show that a standard model for taxonomy classification with conditional random

fields is equivalent to a nested hierarchical Bayesian model. This finding paves

the way for new models for taxonomy classification.

• We conduct a case study on HIV therapy screening and show that multi-task

learning by distribution matching outperforms two iid baselines and two hierar-

chical Bayesian models in most of the cases.

1.3 Own Previously Published Work 7

In Chapter 5 on Multi-Task Learning under Covariate Shift the contributions

are:

• We introduce a new problem setting that is a combination of multi-task learning

and covariate shift. The problem setting naturally arises in a multi-task setting

if the labeled training data for each task are collected by surveys.

• We derive a solution for the new problem setting based on rescaling weights that

match the mixture distribution over all tasks to the distribution of the test data

for a specific target task.

• We reformulate the rescaling weights as a product of two discriminative expres-

sions that can be easily estimated with two logistic regression models. The final

predictive model for a specific target task is trained over reweighted training data

from all tasks.

• We conduct a case study on targeted advertising and observe that the distribution

matching method outperforms reference methods in almost all cases.

1.3 Own Previously Published Work

Parts of this thesis have been previously published or are accepted for publication. This

section provides a list of these publications together with attributions of contributions

to authors. Chapter 3 of this thesis is partially based on [1] and [2]. Parts of Chapter 4

have been published in [3] and Chapter 5 comprises [4]. Publications [5],[6], and [7] are

closely related but are not covered in this thesis.

[1] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for dif-

fering training and test distributions. In Proceedings of the International

Conference on Machine Learning (ICML), 2007.

The project started with my derivation of the discriminative expression for

rescaling weights. Michael Brückner, Tobias Scheffer, and I formulated the in-

tegrated model for learning under covariate shift. Michael derived and imple-

mented the Newton updates for the integrated logistic regression. I conducted

the experiments.

8 1 Introduction

[2] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under

covariate shift with a single optimization problem. In J. Quinonero Candela,

M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors, Dataset Shift in

Machine Learning. MIT Press, Cambridge, 2008.

For this paper I generalized the integrated model of [1] to arbitrary loss functions,

extended the implementation for the exponential loss function, and I conducted

the new experiments. I and Michael Brückner proved the conditions for convexity

of the generalized model.

[3] S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer. Multi-task learning

for HIV therapy screening. In Proceedings of the International Conference

on Machine Learning (ICML), 2008.

This paper originated from our cooperation with the computational biology

group of Thomas Lengauer. Thomas Lengauer and Jasmina Bogojeska con-

tributed to the project with their sound biomedical expertise. I derived and

implemented the models and I conducted the experiments. Jasmina prepared

the data sets and derived and implemented the mutation table kernel.

[4] S. Bickel, C. Sawade, and T. Scheffer. Transfer learning by distribution

matching for targeted advertising. In Advances in Neural Information Pro-

cessing Systems (NIPS), 2009, to appear.

The idea for this paper arose out of the cooperation with our industry part-

ner nugg.ad AG. I derived and implemented the models and conducted the ex-

periments. Christoph Sawade prepared the data sets and I together with him

developed the evaluation methodology.

The following publications did not find their way into this thesis but are closely related.

[5] S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on biased

samples. In Advances in Neural Information Processing Systems (NIPS),

2006.

1.4 Outline 9

In this publication we study learning under sample selection bias in a multi-task

setting. The setting is motivated by the problem of filtering spam messages

for many users, given one common labeled training set collected from publicly

available sources and unlabeled inboxes from the individual users.

[6] J. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama. Direct density

ratio estimation for large-scale covariate shift adaptation. In Proceedings of

the SIAM International Conference on Data Mining, 2008.

In this paper we devise a log-linear extension to the KLIEP model of

Sugiyama et al. (2008a). The extension has computational advantages and per-

mits learning under covariate shift with very large data sets.

[7] S. Bickel, editor. Proceedings of the ECML-PKDD Discovery Challenge

Workshop, 2006.

I organized the ECML-PKDD Discovery Challenge and the Discovery Challenge

workshop in conjunction with the European Conference on Machine Learning

2006. The competition was about personalized spam filtering and generalization

across related learning tasks. The problem setting is an instance of learning

under differing training and test distributions.

1.4 Outline

The outline of this thesis is as follows. In Chapter 2 we start with basic principles of

predictive modeling, loss minimization, and the iid assumption. The following three

chapters each begin with the definition of a problem setting, proceed with solutions,

and empirical studies. Chapter 3 covers learning under covariate shift and centers

around discriminative models to capture the discrepancy between training and test

distributions. A distribution matching approach to multi-task learning is derived in

Chapter 4 in addition to new insights on hierarchical Bayesian modeling. The problem

of multi-task learning in combination with covariate shift is discussed in Chapter 5 and

a solution based on distribution matching is derived. Chapter 6 concludes the thesis.

10 1 Introduction

2 Learning Predictive Models from

Data

The minimization of loss functions over theoretical and empirical distributions plays a

key role in this thesis. This chapter gives a short introduction to learning predictive

functions from data by loss minimization (Sections 2.1 and 2.2). The iid assumption

in predictive modeling and its violation in the covariate shift and multi-task settings is

outlined in Sections 2.2 and 2.3.

2.1 Predictive Modeling by Loss Minimization

Predictive modeling is typically the task of finding a continuous function f(x) of an

input vector x. For binary classification with output labels y ∈ {1,−1} predictions y∗

for an input x can be obtained by thresholding the function,

y∗ = sign(f(x)).

In order to find a good function f(x) a goodness criterion is needed. As such a

criterion one can use a loss function ℓ(f(x), y) that returns a small value if the output

of f(x) leads to the correct prediction y and a large value if the output is wrong. The

task of learning amounts to minimizing the loss ℓ(f(x), y) over all possible inputs x

and outputs y,

E(x,y)∼p(x,y|λ)[ℓ(f(x), y)] =

∫ ∫

ℓ(f(x), y)p(x, y|λ)dxdy, (2.1)

that is the expectation over the probability density p(x, y|λ). λ parameterizes the joint

density over inputs and outputs.

A natural loss function for classification is the zero-one loss,

ℓ0/1(f(x), y)) =







1 if sign(f(x)) = y,

0 otherwise.

12 2 Learning Predictive Models from Data

The expectation over the zero-one loss is the probability of assigning x to the wrong

class. Unfortunately, minimizing the zero-one loss is difficult because it is not convex

and not continuous in the parameters of f .

Convex and continuous loss functions exhibit more favorable properties in optimiza-

tion. The most common choices for classification are the logistic, hinge, and exponential

loss function. The logistic loss function has the form

ℓlog(f(x), y)) = log(1 + exp(−yf(x))),

and leads to a logistic regression model. Support vector machines are based on the

hinge loss,

ℓhinge(f(x), y)) = max(0, 1− yf(x)),

and the exponential loss is given by

ℓexp(f(x), y)) = exp(−yf(x)).

For regression with continuous output variables the linear function can be directly

applied for predictions y∗ given an input x,

y∗ = f(x).

The most common loss function for regression is the squared loss function,

ℓsquared(f(x), y)) = (y − f(x))2.

2.2 Empirical Regularized Loss and IID Assumption

In the previous section we pointed out that in order to learn a function f(x) it is

desirable to minimize the expected loss of Equation 2.1. In practice the theoretical

distribution p(x, y|λ) in Equation 2.1 is unknown and is replaced by the empirical

distribution over a sample L drawn from p(x, y|λ). This leads to the objective of

minimizing the empirical regularized loss in Equation 2.2.

E(x,y)∼L[ℓ(f(x), y)] +
Ω(f)

2σ2
=

1

|L|
∑

(x,y)∈L

ℓ(f(x), y) +
Ω(f)

2σ2
(2.2)

The additional regularization term restricts the complexity of the function f . The influ-

ence of the regularizer is controlled by parameter σ2. Usually, the regularizer improves

2.3 Violation of IID Assumption 13

the generalization performance of the predictor and helps to avoid ill-posed optimiza-

tion problems. In some cases the empirical loss without regularizer is convex but not

strictly convex and if Ω(f) is strictly convex, Equation 2.2 is also strictly convex in the

parameters of f . The most common choice for Ω(f) is the L2-norm of the parameters

of f . For an in-depth introduction and a more theoretical discussion of loss functions,

generalization error, and regularization the reader is referred to Schölkopf and Smola

(2002) and Herbrich (2002).

Once the prediction model is learned by minimizing Equation 2.2, predictions for test

data can be obtained as outlined in the previous section. A common assumption in

predictive modeling is that the training and test data are independently and identically

distributed (iid). This means that each single training and test instance is drawn from

the identical distribution p(x, y|λ) and that training and test instances are conditionally

independent given the parameters λ of the joint distribution p(x, y|λ).

If the training data is governed by p(x, y|λ) the minimum loss on the test data can

only be achieved in general if it is also governed by the same distribution p(x, y|λ).

2.3 Violation of IID Assumption: Covariate Shift and

Multi-Task Setting

The iid assumption mentioned in the previous section is violated when training and

test distributions are different. Let us assume that the training data is drawn from

p(x, y|λ) and the test data is drawn from a different distribution p(x, y|θ). In this case

the minimizer of the expected training loss does not in general minimize the expected

test loss,

argmin
f

E(x,y)∼p(x,y|λ)[ℓ(f(x), y)] 6= argmin
f

E(x,y)∼p(x,y|θ)[ℓ(f(x), y)]. (2.3)

Many theoretical bounds and guarantees for the test error of predictive models are

based on the iid assumption. If we learn a predictive model by minimizing the loss over

the training data drawn from p(x, y|λ) this model is not guaranteed to yield a small

error on the test data governed by p(x, y|θ).

In order to distinguish different assumptions on the relationship between p(x, y|λ) and

p(x, y|θ) we factorize training and test density into marginal and conditional densities

14 2 Learning Predictive Models from Data

as in Equations 2.4 and 2.5.

p(x, y|λ) = p(x|λ)p(y|x, λ) (2.4)

p(x, y|θ) = p(x|θ)p(y|x, θ) (2.5)

We can split up the iid assumption into an assumption on the marginal densities

(Equation 2.6) and an assumption on the conditional densities (Equation 2.7).

p(x|λ) , p(x|θ) (2.6)

p(y|x, λ) , p(y|x, θ) (2.7)

In the covariate shift setting, Assumption 2.6 can be violated but 2.7 holds. This

means, the input marginals—also known as covariate densities—can be different but

training and test data share the same conditional density.

In the more general multi-task setting, Assumption 2.6 as well as 2.7 can be violated.

In multi-task learning there are several potentially related learning tasks each with a

distinct joint input-output distribution. For each task, training data as well as test

data may be available governed by the identical task specific distribution. From the

point of view of one specific task, the test data from this task may governed by a joint

distribution different from the training distributions from all other tasks. The challenge

is to effectively share the training data across tasks. The detailed problem settings of

learning under covariate shift and multi-task learning are introduced in Sections 3

and 4.1.

3 Learning under Covariate Shift

In some applications the difference between the training and test distributions is only

reflected in the distribution over the inputs, in statistics also known as covariates of

a prediction problem. Such a covariate shift has the appealing property that for an

estimate and compensation of the shift only unlabeled test data is required (in addition

to the training data). In many cases unlabeled test data is abundant in contrast to

labeled data from the test distribution.

In the covariate shift problem setting, a training sample is available in matrix XL with

row vectors x1, . . . ,xm. This training sample is governed by an unknown distribution

p(x|λ). Vector y with elements y1, . . . , ym are the labels for training examples and are

drawn according to an unknown target concept p(y|x). In addition, unlabeled test data

becomes available in matrix XT with rows xm+1, . . . ,xm+n. The test data is governed

by a different unknown distribution, p(x|θ). Training and test distribution may differ

arbitrarily, but there is only one unknown target conditional class distribution p(y|x).

A typical cause of a pure covariate shift is a selection process that has only access to

unlabeled test data. For example, the labeled data for a prediction problem is collected

through a clinical study and beforehand doctors select patients for the study based

on specific input features. The selection process causes the training distribution to

be different from the test distribution. At the time of the selection the outcome (the

labels) of the study is unknown to the doctors. The selection and therefore the shift

can only be reflected in the input features not the output labels.

In some cases the type of shift is unknown (covariate shift or joint input-output

shift) but no labeled data, only unlabeled data from the test and labeled data from the

training distribution are available. Even if one knows that there is a joint input-output

shift in the data, there is no way to estimate the joint shift because no labeled test data

is available. In such a setting one could assume covariate shift and apply a covariate

shift model, in order to at least account for this part of the shift. The empirical studies

at the end of this chapter show that this procedure can lead to improved prediction

performance compared to an iid assumption of training and test data.

In this chapter we develop a new framework for learning under covariate shift and

16 3 Learning under Covariate Shift

study the relationship to existing methods both theoretically and empirically. The

outline of the chapter is as follows. We clarify the relationship between covariate shift,

sample selection bias, and propensity scoring in Section 3.1. The prevalent reweighting

procedure for learning under covariate shift is reviewed in Section 3.2. In Section 3.3 we

derive our discriminative framework for learning under covariate shift and instantiate

several new algorithms. The relationship to other direct density ratio estimators is

discussed in Section 3.6. In this context we derive a new out-of-sample extension to

the existing kernel mean matching model. We discuss parameter tuning procedures

for covariate shift models in Section 3.7. An empirical study on spam filtering, text

classification, and landmine detection is presented in Section 3.8. Section 3.9 concludes

this chapter.

3.1 Covariate Shift vs. Sample Selection Bias and

Propensity Scoring

The problem of learning under sample selection bias is very similar to learning under

covariate shift. Propensity scoring can be seen as an extension to learning under sample

selection bias. In this section we will clarify the relationships between covariate shift,

sample selection bias, and propensity scoring.

3.1.1 Sample Selection Bias

A line of work on learning under sample selection bias has meandered from the statistics

and econometrics community into machine learning (Heckman, 1979; Zadrozny, 2004).

Sample selection bias relies on a model of the data generation process. Test instances

are drawn under p(x|θ). Training instances are drawn by first sampling x from the test

distribution p(x|θ). A binary selector variable1 s′ then decides whether x is moved into

the training set (s′ = 1) or moved into the rejected set (s′ = −1). For instances in the

training set (s′ = 1) a label is drawn from p(y|x), for the instances in the rejected set

the labels are unknown. A typical scenario for sample selection bias is credit scoring.

The labeled training sample consists of customers who where given a loan in the past

and the rejected sample are customers that asked for but where not given a loan. New

customers asking for a loan reflect the test distribution.

In the so-called missing at random case, the selector variable is only dependent on

1The prime symbol distinguishes s′ from the variable s, that is used later in this thesis with a slightly
different meaning.

3.1 Covariate Shift vs. Sample Selection Bias 17

x, but not on y; that is, p(s′ = 1|x, y, θ, λ) = p(s′ = 1|x, θ, λ). The distribution of the

selector variable then maps the test onto the training distribution:

p(x|λ) ∝ p(x|θ)p(s′ = 1|x, θ, λ). (3.1)

Proposition 3.1 (Zadrozny, 2004; Bickel and Scheffer, 2007) says that minimizing the

loss on instances weighted by p(s′|x, θ, λ)−1 in fact minimizes the expected loss with

respect to θ.

Proposition 3.1 The expected loss with respect to θ is proportional to the weighted

expected loss with respect to λ with weights p(s′ = 1|x, θ, λ)−1 for the loss incurred by

each x, provided that the support of p(x|θ) is equal to the support of p(x|λ).

E(x,y)∼θ[ℓ(f(x), y)] ∝ E(x,y)∼λ

[
1

p(s′ = 1|x, θ, λ)
ℓ(f(x), y)

]

. (3.2)

When the model is implemented, p(s′ = 1|x, θ, λ) is learned by discriminating the

training against the rejected examples; in a second step the target model is learned by

following Proposition 3.1 and weighting training examples by p(s′|x, θ, λ)−1. No test

examples drawn directly from p(x|θ) are needed to train the model, only labeled selected

and unlabeled rejected examples are required. This is in contrast to the covariate shift

model that requires samples drawn from the test distribution, but no selection process

is assumed and no rejected examples are needed. Covariate shift models can be applied

to learning under sample selection bias in the missing at random setting by treating the

selected examples as labeled sample L and the union of selected (ignoring the labels)

and rejected examples as unlabeled sample T .

Some authors study learning under sample selection bias in a setting where instead

of unlabeled rejected examples only examples directly drawn from the test distribution

p(x|θ) are available (Smith and Elkan, 2007; Hein, 2008). With a missing at random

assumption this is almost identical to the covariate shift problem setting and the same

models can be applied. The only marginal difference lies in the relationship between

the support of the distributions over labeled and unlabeled data. In sample selection

bias one usually assumes that if p(x|θ) > 0 also p(s′ = 1|x, θ, λ) > 0 and therefore the

support of the training distribution is identical to the test distribution. In learning

under covariate shift (see also Section 3.2) the usual assumption is that the support

of the test distribution is contained in the support of the training distribution. In

this sense learning under covariate shift is more general than learning under sample

selection bias (in the missing at random case).

18 3 Learning under Covariate Shift

Smith and Elkan (2004) systematically analyze different dependency assumptions for

sample selection bias. They study selection processes dependent on only observed fea-

tures (missing at random case, described above), only unobserved features, only output

labels, and arbitrary combinations of these. Elkan (2001) and Japkowicz and Stephen

(2002) investigate the case of training data that is only biased with respect to the class

ratio when the true ratio is known. This can be seen as sample selection bias where

the selection only depends on the output labels y.

Maximum entropy density estimation under sample selection bias has been studied

by Dudik et al. (2005). Bickel and Scheffer (2007) impose a Dirichlet process prior

on several learning problems with related sample selection bias. Cortes et al. (2008)

theoretically analyze the error that gets introduced by estimating sample selection bias

from data. Their analysis covers the kernel mean matching procedure and a cluster-

based estimation technique.

3.1.2 Propensity Scoring

Propensity scores (Rosenbaum and Rubin, 1983; Lunceford and Davidian, 2004) are

applied in settings related to sample selection bias; the training data is again assumed

to be drawn from the test distribution p(x|θ) followed by a selection process. The

difference to the setting of sample selection bias is that the selected and the rejected

examples are labeled. Weighting the selected examples by the inverse of the selection

probability p(s′ = 1|x, λ, θ)−1 and weighting the rejected examples by the inverse of

the rejection probability p(s′ = −1|x, λ, θ)−1 results in two unbiased samples with

respect to the test distribution p(x|θ). Propensity scoring is equivalent to applying the

weighting of Equation 3.2 twice, once for the selected, and once for the rejected data.

Propensity score is another term for the sample selection probability p(s′ = 1|x, λ, θ)

described in Section 3.1.1; likewise, it can be estimated by discriminating the selected

against the rejected examples.

Propensity scoring can precede a variety of analysis steps. This can be a statistical

analysis of the two reweighted samples or the training of a target model on reweighted

data. A typical application for propensity scores is the analysis of the success of a

medical treatment. Patients are selected to be given the treatment and some other

patients are selected into the control group (rejected). If the selector variable is not

independent of x (patients may be chosen for an experimental therapy only if they

meet specific requirements), the outcome (e.g., ratio of cured patients) of the two

groups cannot be compared directly, propensity scores have to be applied.

3.2 Compensation of Covariate Shift by Loss Rescaling 19

3.2 Compensation of Covariate Shift by Loss Rescaling

In a covariate shift setting, if training and test distributions were known, then the loss

on the test distribution could be minimized by weighting the loss on the training distri-

bution with an instance-specific factor. Proposition 3.2 (Shimodaira, 2000) illustrates

that the scaling factor has to be p(x|θ)
p(x|λ) .

Proposition 3.2 The expected loss with respect to θ equals the weighted expected loss

with respect to λ with weights p(x|θ)
p(x|λ) for the loss incurred by each x, provided that the

support of p(x|θ) is contained in the support of p(x|λ):

E(x,y)∼θ[ℓ(f(x), y)] = E(x,y)∼λ

[
p(x|θ)
p(x|λ)

ℓ(f(x), y)

]

. (3.3)

After expanding the expected value into its integral
∫

ℓ(f(x), y)p(x, y|θ)dθ, the joint

distribution p(x, y|λ) is decomposed into p(x|λ)p(y|x, λ). Since p(y|x, λ) = p(y|x) =

p(y|x, θ) is the global conditional distribution of the class variable given the instance,

Proposition 3.2 follows. All instances x with positive p(x|θ) are integrated over. Hence,

Equation 3.3 holds as long as each x with positive p(x|θ) also has a positive p(x|λ);

otherwise, the denominator vanishes. This shows that covariate shift can only be

compensated for as long as the training distribution covers the entire support of the

test distribution. If a test instance had zero density under the training distribution,

the test-to-training density ratio which it would need to be scaled with would incur a

zero denominator.

Shimodaira (2000) studies asymptotic properties of learning probabilistic models

under covariate shift. He proves that learning with weighted data by minimizing the

right hand side of Equation 3.3 improves the prediction performance over training with

uniform weights only if the model is misspecified. In this case the estimation bias of

the model is reduced by weighting the training data with the density ratio.

In Shimodaira’s analysis the predictive function f(x) is represented by a conditional

model p(y|x,w) with model parameters w. If the model is well-specified there ex-

ists a w∗ for which the model p(y|x,w∗) exactly matches the true conditional p(y|x),

thus p(y|x,w∗) = p(y|x). In this case, even if the training distribution is exposed to

covariate shift, the expected error is minimized by training with uniformly weighted

data. Because these findings are based on asymptotic approximations they do not nec-

essarily carry over to practical settings with a small number of training examples. An

asymptotic analysis by Sokolovska et al. (2008) shows that methods for learning under

covariate shift can even improve the performance of models in regular semi-supervised

20 3 Learning under Covariate Shift

learning without covariate shift if the model is misspecified.

In practice a classifier f(x) is trained by minimizing the expected weighted loss (right

hand side of Equation 3.3) on a sample L drawn from the training distribution p(x|θ)
reweighted by estimates for p(x|θ)

p(x|λ) . In general, applying non-uniform weights to training

data (some of which may even be zero) reduces the effective sample size. This leads to a

bias-variance trade-off in learning under covariate shift (Shimodaira, 2000): training on

unweighted data causes an estimation bias if the model is misspecified, applying non-

uniform weights reduces the effective sample size and therefore increases the variance

of the estimator. This trade-off can be controlled by using a smoothed rescaling weight
(

p(x|θ)
p(x|λ)

)η
with a parameter η ∈ [0, 1]. A uniform weighting (higher bias, lower variance)

can be obtained by setting η = 0 and the density ratio without smoothing (lower bias,

higher variance) corresponds to η = 1.

Compensation for covariate shift requires the density ratio p(x|θ)
p(x|λ) (Equation 3.3).

Both, p(x|θ) and p(x|λ) are unknown, but p(x|θ) is reflected in T , as is p(x|λ) in L.

A straightforward approach is to first obtain estimates p̂(x|θ) and p̂(x|λ) from the

test and training data, respectively, using kernel density estimation (Shimodaira, 2000;

Sugiyama and Müller, 2005). In a second step, the estimated density ratio is used to

re-sample the training instances, or to train with weighted examples.

This method decouples the problem. First, it estimates training and test distribu-

tions. This step is intrinsically model-based and only loosely related to the ultimate

goal of accurate classification. In a subsequent step, the classifier is derived given fixed

weights. Since the parameters of the final classifier and the parameters that control the

weights are not independent, this decomposition into two optimization steps cannot

generally find the optimal setting of the joint parameter vector.

3.3 Discriminative Learning under Covariate Shift

In discriminative learning tasks such as classification, the classifier’s goal is to produce

the correct output given the input. It is widely accepted that this is best performed

by discriminative learners that directly maximize a quality measure of the produced

output. Model-based optimization criteria such as the joint likelihood of input and

output, by contrast, additionally assess how well the classifier models the distribution

of input values. This amounts to adding a term to the criterion that is irrelevant for

the task at hand.

In this section we derive a discriminative model for learning under different training

and test distributions. The model directly characterizes the divergence between train-

3.3 Discriminative Learning under Covariate Shift 21

ing and test distribution, without the intermediate—intrinsically model-based—step

of estimating training and test distribution separately. We formulate the search for

all model parameters as an integrated optimization problem. This complements the

predominant procedure of first estimating the bias of the training sample, and then

learning the classifier on a weighted version of the training sample. We show that the

integrated optimization can be convex, depending on the model type; it is convex for

the exponential model. We derive a Newton gradient descent procedure, leading to a

kernel logistic regression and an exponential model classifier for covariate shift.

Section 3.3.1 describes the generative modeling assumption of the integrated model.

In Section 3.3.2 we outline a maximum a posteriori estimation procedure for the

model parameters. Section 3.3.3 depicts the discriminative reformulation of the test-

to-training ratio and defines the label likelihood. Section 3.3.4 describes the integrated

optimization problem. We derive primal and kernelized classifiers for differing training

and test distributions in Section 3.3.5. In Section 3.4, we analyze the convexity of the

integrated optimization problem. Section 3.5 describes a two-stage approximation that

allows to train virtually any type of classifier under covariate shift.

3.3.1 Integrated Model

Our goal is to find model parameters w for a probabilistic classification model

f(x) = argmaxy p(y|x;w). The model should correctly predict labels of the test

data XT drawn from p(x|θ). A regular maximum a posteriori estimation w′ =

argmaxw p(y|XL;w)p(w), would only use the training data (y,XL) governed by p(x|λ).

By ignoring the test data, this estimate will not generally result in a model that pre-

dicts the missing labels of the test data with a minimum error because the training

distribution p(x|λ) is different from the test distribution p(x|θ).
In the following we devise a probabilistic model that accounts for the difference

between training and test distribution. Before we describe the model we define a joint

data matrix X that is a concatenation of the matrices XL and XT . The model is based

on a binary selector variable s: Given an instance vector x from the joint matrix X of

all available instances, selector variable s decides whether x is drawn into the training

data XL and y is determined (s = 1) or into the test data XT (s = −1). The variable

s is governed by the distribution p(s|x;v). Parameter v characterizes the discrepancy

between the training and test distribution. Based on the model for s we can now

describe the generative process underlying our model:

1. Draw parameter vectors v and w from prior distributions p(v) and p(w);

22 3 Learning under Covariate Shift

2. For each row x in matrix X draw binary variable s from distribution p(s|x;v);

accordingly, the likelihood of the vector of all selector variables s is p(s|X;v) =
∏m+n

i=1 p(si|xi;v);

3. For all selected training examples (all examples xi with si = 1) draw vector y of

all labels from p(y|s,X;w,v).

This generative process corresponds to the following factorization of the joint proba-

bility of the vector of labels y, vector of selector variables s, and parameter vectors v

and w:

p(y, s,w,v|X) = p(y|s,X;w,v)p(s|X;v)p(w)p(v). (3.4)

3.3.2 Maximum A Posteriori Parameter Inference

For parameter inference we want to find parameters w that maximize the posterior

probability given all available data (Equation 3.5). The available data are the data

matrix X, the label vector y, and the selection vector s, that splits the data matrix

into training and test data. Because the parameter v is unknown and is not needed for

the final classifier the best we can do is to integrate it out (Equation 3.6).

w∗ = argmaxw p(w|y, s,X) (3.5)

= argmaxw

∫

p(w,v|y, s,X)dv (3.6)

Integrating over v is computationally infeasible. In Equation 3.7, the integral is there-

fore approximated by the single assignment of values to the parameters which max-

imizes the posterior—the maximum a posteriori (MAP) estimator. In our case, the

MAP estimator naturally assigns values to all parameters, w and v.

(wMAP,vMAP) = argmaxw,v p(w,v|y, s,X) (3.7)

= argmaxw,v p(y, s,w,v|X) (3.8)

= argmaxw,v p(y|s,X;w,v)p(s|X;v)p(w)p(v) (3.9)

Equation 3.8 follows from multiplication with a constant p(y, s|X) and with the chain

rule. Equation 3.9 applies the factorization from the generative process of Equation 3.4.

The class-label posterior p(y|x;wMAP) is conditionally independent of vMAP given

wMAP. However, wMAP and vMAP are dependent. Assigning a single MAP value to [w,v]

instead of integrating over v is a common approximation. However, sequential max-

3.3 Discriminative Learning under Covariate Shift 23

imization of p(s|X;v) over parameters v followed by maximization of p(y|s,X;w,v)

over parameters w with fixed v would amount to an additional degree of approximation

and will not generally coincide with the maximum of the product in Equation 3.9.

In the next sections we will discuss the likelihood functions p(y|s,X;w,v) and

p(s|X;v) and the optimization problem for parameter inference based on maximization

of Equation 3.9.

3.3.3 Label Likelihood and Discriminative Weighting Factors

In order to define the label likelihood we first derive a discriminative expression for
p(x|θ)
p(x|λ) which will no longer include any density on instances. When p(s = −1) > 0,

which is implied by the test set not being empty, the definition of s allows us to rewrite

the test distribution as p(x|θ) = p(x|s = −1, θ). Since test instances are only dependent

on parameter θ but not on parameter λ, equation p(x|s = −1, θ) = p(x|s = −1, θ, λ)

follows. By an analogous argument, p(x|λ) = p(x|s = 1, θ, λ) when p(s = 1) > 0. This

implies Equation 3.10.

In Equation 3.11, Bayes’ rule is applied twice; the two terms of p(x|θ, λ) cancel each

other out in Equation 3.12. Since p(s = −1|x, θ, λ) = 1 − p(s = 1|x, θ, λ), Equation

3.13 follows.

The conditional p(s = 1|x, θ, λ) discriminates training (s = 1) against test instances

(s = −1).

p(x|θ)
p(x|λ)

= p(x|s = −1, θ, λ)
1

p(x|s = 1, θ, λ)
(3.10)

=
p(s = −1|x, θ, λ)p(x|θ, λ)

p(s = −1|θ, λ)

p(s = 1|θ, λ)

p(s = 1|x, θ, λ)p(x|θ, λ)
(3.11)

=
p(s = 1|θ, λ)

p(s = −1|θ, λ)

p(s = −1|x, θ, λ)

p(s = 1|x, θ, λ)
(3.12)

=
p(s = 1|θ, λ)

p(s = −1|θ, λ)

(
1

p(s = 1|x, θ, λ)
− 1

)

(3.13)

The significance of Equation 3.13 is that it shows how the optimal example weights, the

test-to-training ratio p(x|θ)
p(x|λ) , can be determined without knowledge of either training or

test density. The right hand side of Equation 3.13 can be evaluated based on a model

that discriminates training against test examples and outputs how much more likely

an instance is to occur in the test data than it is to occur in the training data. Instead

of potentially high-dimensional densities p(x|θ) and p(x|λ), a conditional distribution

of the single binary variable s needs to be modeled.

The expression p(s|x, θ, λ) in Equation 3.13 corresponds to the parametric model

24 3 Learning under Covariate Shift

p(s|x;v) of Equation 3.4. With this model we can predict test-to-training density

ratios for the training data in XL according to Equation 3.13.

Since our goal is discriminative training, the likelihood function p(y|w,XL) (not

taking training-test difference v into account) would be
∏

i p(yi|xi;w). Intuitively,
p(x|θ)
p(x|λ) dictates how many times, on average, x should occur in XL if XL was governed

by the test distribution θ. When the individual conditional likelihood of x is p(y|x;w),

then the likelihood of p(x|θ)
p(x|λ) occurrences of x is p(y|x;w)

p(x|θ)
p(x|λ) . Using a parametric

model p(s|x;v), according to Equation 3.13 the test-to-training ratio p(x|θ)
p(x|λ) can be

expressed as 2

p(s = 1)

p(s = −1)

(
1

p(s = 1|x;v)
− 1

)

.

Therefore, we define the likelihood function as

p(y|s,X;w,v) =
m∏

i=1

p(yi|xi;w)
p(s=1)

p(s=−1)

(
1

p(si=1|xi;v)
−1
)

. (3.14)

As an immediate corollary of Manski and Lerman (1977), the likelihood function of

Equation 3.14 has the property that when the true value v∗ is given, its maximizer over

w is a consistent estimator of the true parameter w∗ that has produced labels for the

test data under the test distribution θ. That is, as the sample grows, the maximizer of

Equation 3.14 converges in probability to the true value w∗ of parameter w.

Shortly after we first published the above derivations, Smith and Elkan (2007) derive

Equation 3.13 from the perspective of learning under sample selection bias. For the

statistical analysis of case-control studies, Prentice and Pyke (1979) estimate the ratio

of two odds ratios with a discriminative model using a formula similar to Equation 3.13.

This double odds ratio is a statistical measure of the relative risk of an incidence (e.g.,

lung cancer) given a specific exposure (e.g., cigarette smoking) based on data from a

retrospective study.

3.3.4 Optimization Problem for Integrated Model

The likelihood function p(s|X;v) resolves to p(si = 1|xi;v) for all training instances

and p(si = −1|xi;v) for all test instances:

p(s|X;v) =
m∏

i=1

p(si = 1|xi;v)
m+n∏

i=m+1

p(si = −1|xi;v). (3.15)

2For a simplified presentation we drop the conditioning in the prior ratio, i.e., p(s|θ, λ) = p(s).

3.3 Discriminative Learning under Covariate Shift 25

Equation 3.16 summarizes Equations 3.7 to 3.9. Equation 3.17 inserts the likelihood

models (Equations 3.14 and 3.15) and draws constants p(s = 1) and p(s =−1) out of

the product.

p(w,v|y, s,X) ∝ p(y|s,X;w,v)p(s|X;v)p(w)p(v) (3.16)

=

(
m∏

i=1

p(y|xi;w)
1

p(si=1|xi;v)
−1

) p(s=1)
p(s=−1)

(3.17)

(
m∏

i=1

p(si = 1|xi;v)
m+n∏

i=m+1

p(si = −1|xi;v)

)

p(w)p(v)

Using a logistic model for p(s = 1|x;v), we notice that Equation 3.13 can be simplified

as in Equation 3.18.

p(s = 1)

p(s = −1)

(
1

1/(1 + exp(−vTx))
− 1

)

=
p(s = 1)

p(s = −1)
exp(−vTx) (3.18)

Optimization Problem 1 is derived from Equation 3.17 in logarithmic form, using linear

models vTxi and wTxi and a logistic model for p(s = 1|x;v). Negative log-likelihoods

are abbreviated ℓw(yiw
Txi) = − log p(yi|xi;w) and ℓv(siv

Txi) = − log p(si|xi;v), re-

spectively; this notation emphasizes the duality between likelihoods and empirical loss

functions. The regularization terms correspond to Gaussian priors on v and w with

variances σ2
v and σ2

w.

Optimization Problem 1 Over all w and v, minimize

m∑

i=1

p(s = 1)

p(s = −1)
exp(−vTxi)ℓw(yiw

Txi)

+
m+n∑

i=1

ℓv(siv
Txi) +

1

2σ2
w

wTw +
1

2σ2
v

vTv.

In Section 3.2 we described how the bias-variance trade-off in learning under covariate

shift can be controlled by a smoothed density ratio p(x|θ)
p(x|λ)

η
(Shimodaira, 2000). In

Optimization Problem 1 the regularization parameter σ2
v for the weight model plays

the role of Shimodaira’s smoothing parameter η. The parameter σ2
v is the variance of

a Gaussian prior on v and therefore regularizes the L2-norm of v. If we apply η to the

density ratio model of Equation 3.18 as shown in Equation 3.19 we observe that scaling

vTx by η would have the same effect as regularizing the L2-norm of v.

(
p(s = 1)

p(s = −1)
exp(−vTx)

)η

=

(
p(s = 1)

p(s = −1)

)η

exp(−ηvTx) (3.19)

26 3 Learning under Covariate Shift

Empirically, we find that smoothing of the constant prior ratio with η in the first term

on the right hand side of Equation 3.19 is not necessary because σ2
v gives us enough

control to the smoothness of the weights.

3.3.5 Primal and Kernelized Learning Algorithm

We derive a Newton gradient descent method that directly minimizes Optimization

Problem 1 in the attribute space. To this end, we need to derive the gradient and the

Hessian of the objective function. The update rule assumes the form of a set of linear

equations that have to be solved for the update vector [∆v, ∆w]T. It depends on the

current parameters [v,w]T, all combinations of training and test data, and resulting

coefficients. In order to express the update rule as a single equation in matrix form,

we define

X =




XL XT 0

0 0 XL



 , (3.20)

where XL and XT are the matrices of training vectors and test vectors, respectively.

Theorem 3.1 The update step for the Newton gradient descent minimization of Op-

timization Problem 1 is [v′,w′]T ← [v,w]T + [∆v, ∆w]T with

(XΛXT + S)




∆v

∆w



 = −Xg − S




v

w



 . (3.21)

The definitions of coefficients Λ, S, and g—and the proof of the theorem—can be found

in Appendix A.

Given the parameter w, a test instance x is classified as f(x;w) = sign(wTx).

We derive a kernelized version of the integrated classifier for differing training and

test distributions. A transformation Φ maps instances into a target space in which a

kernel function k(xi,xj) calculates the inner product Φ(xi)
TΦ(xj). The update rule

(Equation 3.21) thus becomes

(Φ(X)ΛΦ(X)T + S)




∆v

∆w



 = −Φ(X)g − S




v

w



 . (3.22)

3.4 Convexity Analysis and Solving the Optimization Problems 27

Φ(X) is defined by

Φ(X) =




Φ(XL) Φ(XT) 0

0 0 Φ(XL)



 . (3.23)

According to the Representer Theorem, the optimal separator is a linear combination

of examples. Parameter vectors α and β in the dual space weight the influence of all

examples:




v

w



 = Φ(X)




α

β



 . (3.24)

Equation 3.22 can therefore be rewritten as Equation 3.25. We now multiply Φ(X)T

from the left to both sides and obtain Equation 3.26. We replace all resulting occur-

rences of Φ(X)TΦ(X) by the kernel matrix K and arrive at Equation 3.27; S is replaced

by S′ such that Φ(X)TSΦ(X) = Φ(X)TΦ(X)S′, i.e., S′
i,i = σ−2

v for i = 1, . . . , m + n

and S′
m+n+i,m+n+i = σ−2

w for i = 1, . . . , m. Equation 3.27 is satisfied when Equation

3.28 is satisfied. Equation 3.28 is the update rule for the dual Newton gradient descent.

(Φ(X)ΛΦ(X)T + S)Φ(X)




∆α

∆β



 = −Φ(X)g − SΦ(X)




α

β



 (3.25)

Φ(X)T(Φ(X)ΛΦ(X)T + S)Φ(X)




∆α

∆β



 = −Φ(X)TΦ(X)g − Φ(X)TSΦ(X)




α

β





(3.26)

(KΛK + KS′)




∆α

∆β



 = −Kg −KS′




α

β



 (3.27)

(ΛK + S′)




∆α

∆β



 = −g − S′




α

β



 (3.28)

Given the parameters, test instance x is classified by f(x; β) = sign(
∑m

i=1 βik(x,xi)).

3.4 Convexity Analysis and Solving the Optimization

Problems

The following theorem specifies sufficient conditions for convexity of Optimization Prob-

lem 1. With this theorem we can easily check whether the integrated classifier for co-

28 3 Learning under Covariate Shift

variate shift is convex for specific models of the negative log-likelihood functions. The

negative log-likelihood function ℓw itself and its first and second derivatives are needed.

Equations A.1 to A.3 in Appendix A define shorthand notation which we will use in

the following.

Theorem 3.2 Optimization Problem 1 is convex if the loss function ℓv is convex and

ℓw is log-convex and non-negative. The log-convexity condition is equivalent to

ℓwℓ′′w − ℓ′2w ≥ 0. (3.29)

Proof Looking at Optimization Criterion 1 we immediately see that the regularizers

are convex. If ℓv is convex, the second term is convex as well. We therefore only need

to analyze the convexity of the term

m∑

i=1

p(s = 1)

p(s = −1)
exp(−vTxi)ℓw(yiw

Txi)

A sum is convex if the single summands are convex. And a sufficient condition for

convexity of a function is that it is non-negative and log-convex. This means we only

need to check whether

log
p(s = 1)

p(s = −1)
− vTxi + log ℓw,i

is convex. The prior ratio is assumed to be constant. The second term is linear and

therefore convex and the third term is the log-convexity condition of ℓw. The second

derivative of log ℓw is

ℓ−1
w ℓ′′w + ℓ−2

w ℓ′2w,

thus log ℓw is convex if ℓwℓ′′w − ℓ′2w is non-negative.

In order to check Optimization Criterion 1 for convexity we need to choose models

of the negative log-likelihood ℓv and ℓw and derive their first and second derivatives.

These derivations are also needed to actually minimize Optimization Criterion 1 with

the Newton update steps derived in the last section.

We use a logistic model ℓv(siv
Tx) = log(1 + exp(−siv

Tx)); the abbreviations of

Appendix A can now be expanded:

ℓ′
v,isixij = − exp(−siv

Txi)

1 + exp(−sivTxi)
sixij ; ℓ′′

v,ixijxik =
exp(−siv

Txi)

(1 + exp(−sivTxi))2
xijxik. (3.30)

For the target classifier, we detail the derivations for logistic and for exponential

models of ℓw. For the logistic model the derivatives of ℓw are the same as for ℓv, only

3.5 Two-Stage Approximation to Integrated Model 29

v needs to be replaced by w and si by yi. For an exponential model with ℓw(yiw
Tx) =

exp(−yiw
Tx) the abbreviations are expanded as follows:

ℓ′
w,iyixij = − exp(−yiw

Txi)yixij ; ℓ′′
w,ixijxik = exp(−yiw

Txi)xijxik. (3.31)

Using Theorem 3.2 we can now easily check the convexity of the integrated classifier

with logistic model and with exponential model for ℓw.

Corollary 3.1 With a logistic model for ℓw, the condition of Equation 3.29 is violated

and therefore Optimization Problem 1 with logistic model for ℓw is not convex in general.

Proof Inserting the logistic function into Equation 3.29 we get the following solution.

ℓw,iℓ
′′

w,i − ℓ′2
w,i =

exp(−yiw
Txi)

(1 + exp(−yiwTx))2
(
log(1 + exp(−yiw

Tx))− exp(−yiw
Txi)

)
(3.32)

The fraction in Equation 3.32 is always positive, the difference term is always nega-

tive, thus Optimization Problem 1 with logistic model for ℓw is non-convex.

Empirically, we find that it is a good choice to select the parameters of a regular, iid

logistic regression classifier as starting point for the Newton gradient search. Since

iid logistic regression has a convex optimization criterion, this starting point is easily

found.

One can easily show that Optimization Problem 1 is non-convex when ℓw are chosen

as hinge loss or quadratic loss.

Corollary 3.2 Optimization Problem 1 with exponential model for ℓw is convex.

Proof Inserting the exponential model into the above criterion results in the nonneg-

ative expression

ℓ′′
w,iℓw,i − ℓ′2

w,i = exp(−yiw
Txi) exp(−yiw

Txi)− (− exp(−yiw
Txi)

2) = 0. (3.33)

This means the global optimum of Optimization Problem 1 with exponential model for

ℓw can easily be found by Newton gradient descent.

3.5 Two-Stage Approximation to Integrated Model

The previous sections describe a complete solution to the learning problem under co-

variate shift. Optimization Problem 1 is convex for the exponential model; solving

30 3 Learning under Covariate Shift

it using the efficient procedures derived in Section 3.3.5 produces a globally optimal

solution.

For the logistic model, unfortunately, it is not convex. Furthermore, the regularized

regression classifier is deeply embedded in Optimization Problem 1. It would not be

easy to replace it by a different type of classifier such as, for instance, a decision tree.

We will now discuss an approximation to Optimization Problem 1 which solves two

consecutive optimization problems. The first optimization problem produces example-

specific weights; the second step generates a classifier from the weighted examples.

Both optimization problems are convex for exponential, logistic, and hinge loss as well

as for many other loss functions. But most significantly, the two-stage approximation

is conceptually simple: the second optimization step can be carried out by any learning

procedure that is able to scale the loss incurred by each example using prescribed

weight factors. Example-specific weights can easily be incorporated into virtually any

learning method. Furthermore, as a result of the decomposition into two optimization

problems parameter tuning becomes much easier because cross-validation can be used

(cf. Section 3.7).

The derivation in Section 3.3.2 approximates the integral over v by simultaneously

selecting a pair of values which maximize the posterior. This leads to the joint MAP

hypothesis over v and w. In the resulting optimization problem, v and w are free pa-

rameters. At a higher degree of approximation, one may factorize the posterior (Equa-

tion 3.34) and at first approximate the integral over v by the maximum of p(v|y, s,X)

(Equations 3.37 and 3.38). Subsequently, the posterior over w is maximized given fixed

parameters vMAP′ (Equations 3.35 and 3.36).

w∗ = argmaxw

∫

p(w,v|y, s,X)dv

= argmaxw

∫

p(w|y, s,X;v)p(v|y, s,X)dv (3.34)

≈ argmaxw p(w|y, s,X;vMAP′) (3.35)

= argmaxw p(y|s,X;w,vMAP′)p(w) (3.36)

with vMAP′ = argmaxv p(v|y, s,X) (3.37)

= argmaxv p(s|y,X;v)p(v) (3.38)

This results in two optimization problems. Only parameter v is free in the first stage

(Optimization Problem 2). The test-to-training ratio (Equation 3.18) can be derived

from the resulting value of v.

3.6 Kernel Mean Matching and KLIEP 31

Optimization Problem 2 Over v, minimize

m+n∑

i=1

ℓv(siv
Txi) +

1

2σ2
v

vTv.

In the second stage (Optimization Problem 3), the target model parameters w are

optimized with constant parameters v and constant example weights. The parameters

v are the result of Optimization Problem 2.

Optimization Problem 3 Over w (v is constant), minimize

m∑

i=1

p(s = 1)

p(s = −1)
exp(−vTxi)ℓw(yiw

Txi) +
1

2σ2
w

wTw.

The criterion of Optimization Problem 3 weights the loss ℓw(yiw
Txi) that each example

incurs such that the sample is matched to the test distribution. The last term 1
2σ2

w

wTw

is the regularizer of the regression. Optimization Problem 3 can easily be adapted to

virtually any type of classification mechanism by inserting the appropriate loss function

ℓw(yiw
Txi) and regularizer. Operationally, an arbitrary classification procedure is ap-

plied to a sample that is either resampled from the training data according to sampling

distribution p(s=1)
p(s=−1) exp(−vTxi), or the classifier is applied to the training data with

the example-specific loss scaled according to p(s=1)
p(s=−1) exp(−vTxi).

3.6 Kernel Mean Matching and KLIEP

Kernel Mean Matching and KLIEP are both models for directly estimating rescaling

weights. Similar to the approximation in Section 3.5 they are two-step approaches that

first find weights for the training instances and in the subsequent step a target model

is trained over reweighted data. Section 3.6.1 describes kernel mean matching, reveals

the relationship to the discriminative model of Section 3.3, and paves the way for a

tuning procedure for kernel mean matching. In Section 3.6.2 KLIEP and its log-linear

extension are reviewed.

3.6.1 Kernel Mean Matching

Kernel mean matching (Huang et al., 2007) finds weights for the training instances such

that the first momentum of training and test sets—i.e., their mean value—matches in

feature space (Optimization problem 3.1). Φ(·) is a mapping into a feature space and

32 3 Learning under Covariate Shift

σ2
v is a regularization parameter. Vector αL denotes all elements αi with i = 1, . . . , m.

Optimization Problem 3.1

min
αL

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

m

m∑

i=1

αiΦ(xi)−
1

n

m+n∑

i=m+1

Φ(xi)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

subject to αi ∈
[
0, σ2

v

]
and

∣
∣
∣
∣
∣

1

m

m∑

i=1

αi − 1

∣
∣
∣
∣
∣
≤ ǫ

By applying the binomial theorem to the first term in Optimization Problem 3.1

one obtains the equivalent Optimization Problem 3.2 that is a quadratic programming

problem and can be solved with standard optimization tools. K(LL) is the kernel matrix

between training and K(LT) between training and test instances.

Optimization Problem 3.2

min
αL

1

2
αT

LK(LL)αL −
m

n
αT

LK(LT)1

subject to αi ∈
[
0, σ2

v

]
and

∣
∣
∣
∣
∣

1

m

m∑

i=1

αi − 1

∣
∣
∣
∣
∣
≤ ǫ

Matching the means in feature space is equivalent to matching all moments of the

distributions if a universal kernel is used.

We derive a new interpretation for kernel mean matching that shows its relation

to Optimization Problem 2 and the above two-stage approximation to the integrated

classifier for covariate shift.

Using a hinge loss for ℓv(vTxi + b, si) in Optimization Problem 2 and an explicit

offset parameter b we obtain a regular support vector machine. The kernel matrix of

this SVM is
[

K(LL) K(LT)

KT

(LT)
K(TT)

]

and the target variables are si ∈ {1,−1}. An SVM can

heuristically be simplified by setting the dual parameters αi for the unlabeled examples

to a fixed value m
n . This can be interpreted as a mixture between an SVM and a Rocchio

classifier. The αi corresponding to the labeled examples (si = 1) are trained with an

SVM; setting αi of all unlabeled examples (si = −1) to m
n approximates the negative

class (the unlabeled examples) by their centroid in feature space in accordance with

the Rocchio classifier (Joachims, 1997).

3.6 Kernel Mean Matching and KLIEP 33

The SVM optimization criterion with fixed αi = m
n for examples with si = −1 is

min
αL

1

2
αT

LK(LL)αL −
m

n
αT

LK(LT)1 +
1

2

m2

n2
1K(TT)1− αT

L1− n
m

n

subject to αi ∈
[
0, σ2

v

]
and

m∑

i=1

αi =
n∑

i=1

m

n
= m;

again, vector αL denotes all elements αi with i = 1, . . . , m. We can drop the constant

terms (αT

L1 is constant because of the second constraint) and arrive at Optimization

Problem 3.3.

Optimization Problem 3.3

min
αL

1

2
αT

LK(LL)αL −
m

n
αT

LK(LT)1 subject to αi ∈
[
0, σ2

v

]
and αT

L1 = m.

This is almost identical to the objective of kernel mean matching (Optimization Prob-

lem 3.2). The only difference is that Huang et al. (2007) relax the second constraint

up to a small constant ǫ, their constraint is
∣
∣ 1
m

∑m
i=1 αi − 1

∣
∣ ≤ ǫ. Empirically we find

that setting ǫ to zero has no impact on the performance. In order to solve the second

0
-2 -1 0 1 2 3 4

re
w

e
ig

h
ti
n
g
 f
a
c
to

r

decision function value

2
vσ

Equation 3.18
kernel mean matching

Figure 3.1: Relationship between decision function value and rescaling factor of labeled ex-
amples for Equation 3.18 and kernel mean matching, the σ2

v
label on the vertical axis refers

only to kernel mean matching.

stage (Optimization Problem 3), kernel mean matching does not use rescaling factors
p(s=1)

p(s=−1) exp(−vTxi − b) but directly uses the dual αi parameters as weights. We want

to find out what the relationship between p(s=1)
p(s=−1) exp(−vTxi − b) and αi is; we derive

the Lagrangian of kernel mean matching (Optimization Problem 3.2) and analyze the

Karush-Kuhn-Tucker conditions. This results in a similar interpretation as for a reg-

ular SVM with three cases shown in Equations 3.39; the difference to a regular SVM

34 3 Learning under Covariate Shift

is a threshold on the decision function value of 0 instead of 1. The decision function

is g(x; α, b) = 1
m

∑m
j=1 αjk(x,xj) − 1

n

∑m+n
j=m+1 k(x,xj) + b; the first term is the SVM

part and the second the Rocchio part of the decision function. The derivations can be

found in Appendix B.

case 1: g(xi; α, b) ≥ 0 ⇒ αi = 0

case 2: g(xi; α, b) ≤ 0 ⇒ αi = σ2
v

case 3: g(xi; α, b) = 0 ⇒ 0 < αi < σ2
v

(3.39)

With Figure 3.1, we graphically compare the relationship between decision function

value and rescaling factor of labeled examples for Equation 3.18 and kernel mean match-

ing (Equations 3.39). For the curve of Equation 3.18 the decision function is vTxi (or

its dual counterpart). For kernel mean matching the decision function is g(x; α, b) as

defined above. The intuition of Equation 3.18 and a discriminative model of the bias

between labeled and unlabeled examples is the following. If a labeled example x is

very similar to the unlabeled examples it receives a low decision function value vTx

and a large rescaling factor p(x|θ)
p(x|λ) ≈

p(s=1)
p(s=−1) exp(−vTx). In Figure 3.1 we can see that

this intuition roughly also holds for kernel mean matching but the step function causes

binary rescaling factors for examples not on the decision boundary. With Equation 3.18

examples never get a rescaling factor of 0, with kernel mean matching this is possible

and these examples are completely excluded from the training of the target classifier in

the second step.

To sum up, kernel mean matching can be interpreted as an approximated variant of

Optimization Problem 2: it uses a partially Rocchio-style approximation to the SVM

optimization criterion, instead of the exponential function for the relationship between

decision function value and rescaling factor, kernel mean matching uses a step function.

The regularization parameter and the kernel parameters (in kernelized variants) of

Optimization Problem 2 and of the KLIEP method (described in the next section) can

be easily tuned by cross-validation because these models can be directly applied to

out-of-sample data. For a description of such a tuning procedure see Section 5.3.2 and

Sugiyama et al. (2008a). In a transductive manner, kernel mean matching estimates

only weights for training examples. Until now, there is no out-of-sample extension

known and it is unclear how to tune regularization and kernel parameters of kernel

mean matching. Based on the relationship to SVMs derived in this section one can

develop a tuning procedure for kernel mean matching. The above described decision

function g(x; α, b) is an out-of-sample extension for kernel mean matching and can be

3.6 Kernel Mean Matching and KLIEP 35

used to evaluate tuning data in a cross-validation-based tuning procedure.

3.6.2 KLIEP

KLIEP (Kullback-Leibler importance estimation procedure) estimates rescaling weights

by minimizing the Kullback-Leibler divergence between the test and the reweighted

training distribution (Sugiyama et al., 2008a). The rescaling weights p(x|θ)
p(x|λ) are mod-

eled by a weighted sum over kernel functions centered at the test instances, r(x|α) =
∑m+n

i=m+1 αiK(x,xi). The goal is to estimate model parameters α by minimizing the

Kullback-Leibler divergence between the test and the reweighted training distribution

(Equation 3.40). In Equation 3.41 all terms independent of αi are ignored and in

Equation 3.42 the integral is approximated with sum over the test examples.

KL [p(x|θ)||r(x|α)p(x|λ)] =

∫

p(x|θ) log
p(x|θ)

r(x|α)p(x|λ)
(3.40)

∝ −
∫

p(x|θ) log r(x|α) (3.41)

≈ − 1

n

m+n∑

i=m+1

log r(x|α) (3.42)

This leads to Optimization Problem 3.4. The first constraint enforces that the

reweighted empirical distribution over the training examples is a proper distribution

and sums to one. For optimization Sugiyama et al. (2008a) propose gradient decent

steps interleaved with projection steps to satisfy the constraints.

Optimization Problem 3.4

min
α

− 1

n

m+n∑

i=m+1

log r(x|α)

subject to
1

m

m∑

i=1

r(x|α) = 1 and αi ≥ 0.

Sugiyama et al. (2008b) analyze asymptotic properties of KLIEP and prove the con-

vergence to the true rescaling weights. A log-linear extension (Tsuboi et al., 2008) to

KLIEP with r′(x|α) ∝ exp(
∑m+n

i=m+1 αiK(x,xi)) leads to an unconstrained optimization

problem and has computational advantages.

36 3 Learning under Covariate Shift

3.7 Parameter Tuning

Optimization Problem 1 relies on hyper-parameters σ2
v and σ2

w that need to be tuned.

For the two-stage approximation of Section 3.5 and reference methods like kernel mean

matching two similar parameters need to be specified. In addition to the regularization

parameters kernel parameters need to be tuned for non-linear kernels. Parameter tuning

for covariate shift models is much more difficult than for regular prediction models

because in the covariate shift setting there is no labeled data available drawn from the

test distribution. Parameter tuning by regular cross-validation on the labeled training

data is inappropriate because the labeled training data is not governed by the test

distribution.

In the following paragraphs we describe different tuning procedures; two proce-

dures require prior knowledge and one does not require prior knowledge on the hyper-

parameters. The tuning procedures with prior knowledge can be used for all described

models. The one without prior knowledge cannot be used for kernel mean matching

and the one-stage model of Optimization Problem 1.

A typical setting with prior knowledge on the hyper-parameters is when the difference

between training and test data is introduced by a covariate shift over time and the

input distribution shifts constantly over time. The most recent data is the unlabeled

test data and the older data has been labeled and is the training data. In this setting

the parameters can be tuned by splitting the labeled training data into two consecutive

parts. The tuning models are learned on the part with earlier timestamps and the

hyper-parameters σ2
v and σ2

w and kernel parameters are optimized on the part with

later timestamps.

Another setting with prior knowledge is when in addition to the pair of training and

test set an additional pair of training and fully labeled test set from a different domain

with a similar magnitude of covariate shift is available. This additional set can be

used to tune the parameters. Due to the similar magnitude of the covariate shift the

optimal parameters for the additional domain are assumed to be a good choice for the

parameters of the target domain.

For some two-stage models for covariate shift there is no prior knowledge necessary

to tune hyper-parameters. Sugiyama et al. (2008a) propose to tune the regularizer

of the KLIEP model with cross-validation. In this manner the first stage parameter

σ2
v (and kernel parameters) of the two-stage model of Section 3.5 can be tuned as

follows. The training and the test data are both split into training and tuning folds

and the hold-out likelihood of the tuning folds is optimized with grid search on σ2
v (and

3.8 Empirical Results 37

kernel parameters). The hold-out likelihood measures the predictive performance of

the model p(s|x;v) with respect to predicting the selector variable s of the hold out

examples. Once the regularizer of the first stage is tuned, the second stage parameter

σ2
w (and kernel parameters) can be tuned with cross-validation on weighted training

data (Sugiyama and Müller, 2005). The data of training folds as well as the data of

tuning folds are weighted with the estimated training-to-test ratio.

Kernel mean matching does not provide out-of-sample predictions and it is therefore

difficult to tune the regularization parameter σ2
v with cross-validation. The one-stage

model of Optimization Problem 1 is also difficult to tune with cross-validation because

there is a bidirectional influence between the parameters σ2
v and σ2

w.

In order to compare the one-stage model and kernel mean matching to the other

two-stage models we use tuning procedures based on prior knowledge in the empirical

studies in the next section.

3.8 Empirical Results

We study the benefit of two versions of the integrated classifier for covariate shift and

other reference methods on spam filtering, text classification, and landmine detection

problems.

The first integrated classifier uses a logistic model for ℓw (“integrated log model”),

the second an exponential model for ℓw (“integrated exp model”); ℓv is a logistic model

in both cases.

3.8.1 Reference Methods and Experimental Setup

The first baseline is a classifier trained under iid assumption with logistic ℓw. All

other reference methods consist of a two-stage procedure: first, the difference between

training and test distribution is estimated, the classifier is trained on weighted data

in a second step. The second method is kernel mean matching (Section 3.6.1); we set

ǫ =
√

m− 1/
√

m as proposed by Huang et al. (2007). In the third method, separate

density estimates for p(x|λ) and p(x|θ) are obtained using kernel density estimation

(Shimodaira, 2000), the bandwidth of the kernel is chosen according to the rule-of-

thumb of Silverman (1986).

The last two reference methods rely on the two-stage approximation of Optimization

Problems 2 and 3 with a logistic regression (“two-stage LR”) and an exponential model

classifier (“two-stage exp model”) as their second stages. The example weights are

computed according to Equation 3.18 using a logistic model in the first stage, p(s =

38 3 Learning under Covariate Shift

1|x;v) is estimated by training a logistic regression that discriminates training from

test examples.

The baselines differ in the first stage, the second stage is based on a logistic regres-

sion classifier with weighted examples in all cases but the two-stage exponential model

baseline. We use a maximum likelihood estimate of
m

m+n
n

m+n

= m
n for p(s=1)

p(s=−1) . We use

tuning procedures that rely on prior knowledge (cf. Section 3.7). Short descriptions of

the respective tuning data can be found below. For all experiments we tune the regu-

larization parameters of all methods (and the variance parameter of the RBF kernels

for the landmine experiments) by maximizing AUC on the tuning set.

3.8.2 Spam Filtering

We use the spam filtering data of Bickel et al. (2007); the collection contains nine

different inboxes with test emails (5270 to 10964 emails, depending on inbox) and one

set of training emails compiled from various different sources. We use a fixed set of

1000 emails as training data. We randomly select between 32 and 2048 emails from one

of the original inboxes. We repeat this process 10 times for 2048 test emails and 20 to

640 times for 1024 to 32 test emails. As tuning data we use the labeled emails from an

additional inbox different from the test inboxes. The performance measure is the rate

by which the 1-AUC risk is reduced over the iid baseline (Bickel and Scheffer, 2007);

it is computed as 1− 1−AUC
1−AUCiid

. We use linear kernels for all methods. We analyze the

rank of the kernel matrix and find that it fulfills the universal kernel requirement of

kernel mean matching; this is due to the high-dimensionality of the data.

Figure 3.2 (top row) shows the results for various numbers of unlabeled examples.

The left column of Figure 3.2 compares the integrated classifiers for covariate shift to

the kernel mean matching and kernel density estimation baselines. The right column

compares the integrated classifiers (Optimization Problem 1) with the two-stage ap-

proximations (Optimization Problems 2 and 3). The results for a specific number of

unlabeled examples are averaged over 10 to 640 random test samples and averaged over

all nine inboxes. Averaged over all users and inbox sizes the absolute AUC of the iid

classifier is 0.994. Error bars indicate standard errors of the 1-AUC risk.

The integrated and two-step logistic regression and exponential models and kernel

mean matching perform similarly well. The differences to the iid baseline are highly

significant. For 1048 examples the 1-AUC risk is even reduced by an average of 30% with

the integrated exponential model classifier! The kernel density estimation procedure is

not able to beat the iid baseline. The convex integrated exponential model performs

3.8 Empirical Results 39

integrated log model
integrated exp model
iid baseline

kernel mean matching
kernel density estimation

two-stage LR
two-stage exp model

 0

 0.1

 0.2

 0.3

32 64 128 256 512 1024 2048

re
d

u
c
ti
o

n
 o

f
1

-A
U

C
 r

is
k

test examples in user’s inbox

integrated models vs. reference methods
 spam filtering - average of nine users

 0

 0.1

 0.2

 0.3

32 64 128 256 512 1024 2048

re
d

u
c
ti
o

n
 o

f
1

-A
U

C
 r

is
k

test examples in user’s inbox

integrated models vs. two-stage approx.
 spam filtering - average of nine users

 0

 0.1

32 64 128 256 512 1024

re
d

u
c
ti
o

n
 o

f
1

-A
U

C
 r

is
k

number of test examples

integrated models vs. reference methods
 Cora before and after 1996

 0

 0.1

32 64 128 256 512 1024

re
d

u
c
ti
o

n
 o

f
1

-A
U

C
 r

is
k

number of test examples

integrated models vs. two-stage approx.
 Cora before and after 1996

 0

 0.003

 0.006

32 64 128 256 512

in
c
re

a
s
e

 o
f

A
U

C

number of test examples

integrated models vs. reference methods
 landmine detection

 0

 0.003

 0.006

32 64 128 256 512

in
c
re

a
s
e

 o
f

A
U

C

number of test examples

integrated models vs. two-stage approx.
 landmine detection

Figure 3.2: Average reduction of 1-AUC risk over nine users for spam filtering (top row)
and Cora Machine Learning/Networking classification before and after 1996 (second row) and
average increase of AUC for landmine detection over 812 pairs of mine fields (bottom row)
depending on the number of unlabeled test examples. The left column displays the integrated
models together with the kernel mean matching and kernel density estimation baselines, the
right column compares the integrated models with their two-stage approximations.

40 3 Learning under Covariate Shift

slightly better than its two-stage approximation; for larger number of test examples

(512 to 2048) this difference is statistically significant according to a paired t-test with

significance level of 5%. For the logistic model, the two-stage optimization performs

similarly well as the integrated version.

3.8.3 Text Classification

We now study text classification using computer science papers from the Cora data

set. The task is to discriminate Machine Learning from Networking papers. We select

812 papers written before 1996 from both classes as training examples and 1285 papers

written after 1996 as test examples. For parameter tuning we apply an additional time

split on the training data; we train on the papers written before 1995 and tune on

papers written 1995. Parameters are tuned by maximizing AUC. Title and abstract

are transformed into tfidf vectors, the number of distinct words is 40,000. We again

use linear kernels (rank analysis verifies the universal kernel property) and average the

results over 20 to 640 random test samples for different sizes (1024 for 20 samples to 32

for 640 samples) of test sets. The resulting 1-AUC risk is shown in Figure 3.2 (second

row). The average absolute AUC of the iid classifier is 0.998. The methods based

on discriminative density estimates significantly outperform all other methods. Kernel

mean matching is not displayed because its average performance lies far below the iid

baseline. The integrated models reduce the 1-AUC risk by 15% for 1024 test examples.

3.8.4 Landmine Detection

In a third set of experiments we study the problem of detecting landmines using the

data set of Xue et al. (2007). The collection contains data of 29 mine fields in different

regions. Binary labels (landmine or safe ground) and nine dimensional feature vectors

extracted from radar images are provided. There are about 500 examples for each

mine field. Each of the fields has a distinct distribution of input patterns, varying from

highly foliated to desert areas.

We enumerate all 29 × 28 pairs of mine fields, using one field as training, and the

other as test data. For tuning we hold out 4 of the 812 pairs. Parameters are tuned by

maximizing AUC. Results are increases over the iid baseline, averaged over all 29×28−4

combinations. We use RBF kernels for all methods. The results are displayed in Figure

3.2 (bottom row). The average absolute AUC of the iid baseline is 0.64 with a standard

deviation of 0.07; note, that the error bars are much smaller than the absolute standard

deviation because they indicate the standard error of the differences to the iid baseline.

3.9 Conclusion 41

For this problem, the exponential model classifiers and kernel mean matching sig-

nificantly outperform all other methods on average. Considering only methods with

logistic target model, kernel mean matching is better than all other methods. Inte-

grated logistic regression and two-stage logistic regression are still significantly better

than the iid baseline except for 32 and 64 test examples. The integrated classifiers are

slightly better than the two-stage variants.

3.9 Conclusion

We derived a discriminative model for learning under covariate shift. The contribution

of each training instance to the optimization problem ideally needs to be weighted with

its test-to-training density ratio. We show that this ratio can be expressed—without

modeling either training or test density—by a discriminative model that characterizes

how much more likely an instance is to occur in the test sample than it is to occur in

the training sample.

We described a generative model whose parameters can be estimated with a joint

MAP hypothesis of both the parameters of the test-to-training model and the final

classifier. Optimizing these dependent parameters sequentially incurs an additional

approximation compared to solving the joint optimization problem.

We derived a primal and a kernelized Newton gradient descent procedure for the

joint optimization problem. Theorem 3.2 specifies the condition for the convexity of

Optimization Problem 1. Checking the condition using popular loss functions as models

of the negative log-likelihoods reveals that Optimization Problem 1 is only convex with

exponential loss.

We gave a new interpretation for kernel mean matching as an approximation to

Optimization Problem 2. This finding also led to an out-of-sample extension for kernel

mean matching that can be used for tuning of its kernel and regularization parameters.

Empirically, we found that the integrated and the two-stage models as well as kernel

mean matching outperform the iid baseline and the kernel density estimation model

in almost all cases. In some cases, the integrated models perform slightly better than

their two-stage counterparts. The performance of kernel mean matching depends on

the problem; for one out of three problems it did not beat the iid baseline, for the

others it yielded comparable results to the integrated models.

The two-stage model is conceptually simpler than the integrated model, and may

in some cases have the greatest practical utility. The main advantage compared to

the integrated model is that regularization parameters can be tuned without prior

42 3 Learning under Covariate Shift

knowledge by cross-validation. Another advantage of the two-stage model is that in

the second stage, after the example-specific weights have been derived, virtually any

learning mechanism can be employed to produce the final classifier from the weighted

training sample. This comes at the cost of only a marginal loss of performance compared

to the integrated model.

4 Multi-Task Learning

In the multi-task setting the divergence between training and test distributions is re-

flected in the joint distribution of inputs and outputs across tasks, and is not restricted

to the inputs, as in the covariate shift setting. The term “multi-task” indicates that

there are several (usually more than two) distinct prediction tasks each with its own dis-

tribution over inputs and outputs. Within each task the training and the test data are

governed by the identical task specific distribution; across tasks, the joint distributions

may differ.

Existing methods for multi-task learning often assume that all tasks share one com-

mon model structure. For example, hierarchical Bayesian models assume that the

parameters of all tasks are drawn from one common prior distribution. If there are

tasks that do not have anything in common with all other tasks, or if the common

prior is not flexible enough to capture the relationship between tasks, such models

might not work well in practice.

In this chapter we contribute a new multi-task learning model that can handle ar-

bitrarily different data distributions between tasks without making assumptions about

the data generation process or the relation between tasks. We show that by appropri-

ately weighting each instance in the pool of all examples, one can match the distribution

that governs the pool of examples of all tasks to each of the single task distributions.

We show how appropriate weights can be obtained by discriminating the labeled sample

for a given task against the pooled sample from all other tasks.

The structure of the chapter is as follows. We begin with a definition of the problem

setting in Section 4.1. In Section 4.2 we give an introduction to hierarchical Bayesian

methods for multi-task learning and we show that well known feature mappings for

multi-task learning and taxonomy classification can be directly derived from hierarchi-

cal Bayesian models. Furthermore, we develop a nested hierarchical Bayesian model

for Gaussian processes. Other related work on multi-task learning is reviewed in Sec-

tion 4.3. In Section 4.4, we devise our new multi-task learning method based on distri-

bution matching. A case study on HIV therapy screening is presented in Section 4.5.

Section 4.6 concludes this chapter.

44 4 Multi-Task Learning

4.1 Problem Setting

In supervised multi-task learning, each of several tasks z is characterized by an un-

known joint distribution p(x, y|z) of features x and label y given the task z. The joint

distributions of different tasks may differ arbitrarily but usually some tasks have similar

distributions. A training sample L = 〈(x1, y1, z1), . . . , (xm, ym, zm)〉 collects examples

from all tasks. There may be tasks with little or even no training data. For each

example, input attributes xi, class label yi, and the originating task zi are known. The

entire sample L is governed by the mixed joint density p(z)p(x, y|z). The prior p(z)

specifies the task proportions.

The goal is to learn a hypothesis fz : x 7→ y for each task z. This hypothesis fz(x)

should correctly predict the true label y of unseen examples drawn from p(x|z) for all

z. That is, it should minimize the expected loss

E(x,y)∼p(x,y|z)[ℓ(fz(x), y)]

with respect to the unknown joint distribution p(x, y|z) for each individual z.

In some application settings we may have prior knowledge on the similarity of tasks

in addition to training data. We assume that this knowledge is encoded in a kernel

function k(z, z′) for a pair of tasks z and z′.

4.2 Hierarchical Bayesian Learning

Hierarchical Bayesian models constitute the traditional statistical approach to multi-

task learning. They are an extension to simple Bayesian models. The building blocks of

a simple Bayesian model are a prior probability function p(w|φ) on model parameters

w given hyperparameters φ and a likelihood function p(L|w) that measures how likely

the training data L is under model parameters w. With Bayes’ rule the posterior

probability is given by p(w|L, φ) ∝ p(L|w)p(w|φ). For full Bayesian predictions the

model parameters are integrated out, y∗ = argmaxy

∫
p(y|x,w)p(w|L, φ)dw. Usually,

the integral is only tractable if the prior conjugates to the likelihood function. If this is

not the case one can resort to a maximum a posteriori (MAP) estimation by choosing

the model parameters that maximize the posterior, w∗ = argmaxw p(w|L, φ). Based

on this MAP point estimate the prediction function is y∗ = argmaxy p(y|x,w∗).

In the simple Bayesian model the hyperparameters φ are fixed. In a hierarchical

Bayesian model the hyperparameters are variable and are included in the inference

process (Gelman et al., 2004). A hyperprior p(φ) encodes our prior knowledge on the

4.2 Hierarchical Bayesian Learning 45

hyperparameters. The joint posterior of model parameters and hyperparameters in a

hierarchical Bayesian model is shown in Equation 4.1.

p(w, φ|L) ∝ p(L|w)p(w|φ)p(φ) (4.1)

For full Bayesian predictions parameters w and hyperparameters φ are integrated out

(Equation 4.2).

y∗ = argmax
y

∫

p(y|x,w)

(∫

p(w, φ|L)dφ

)

dw (4.2)

Similar to the simple Bayesian case, if the integrals are intractable Equation 4.2

can be approximated by a MAP point estimate of both parameters, (w∗, φ∗) =

argmaxw,φ p(w, φ|L). Again, the prediction function is y∗ = argmaxy p(y|x,w∗).

Hierarchical Bayesian models can play to their strength in a multi-task setting when

several related model parameters w1, . . . ,wl (l is the number of tasks) share the same

prior probability p(wz|φ). This is based on the generative assumption that all task-

specific model parameters wz are drawn from a common prior. For each task z, training

data Lz = {(xi, yi, zi) ∈ L : zi = z} is available and with conditional independence of

the task parameters given the prior p(wz|φ) the posterior of all model parameters can

be expressed as in Equation 4.3.

p(w1, . . . ,wl, φ|L1, . . . , Ll) ∝ p(φ)
∏

z

p(Lz|wz)p(wz|φ) (4.3)

Again, if the integrals are tractable the parameters can be integrated out for predic-

tion, otherwise a MAP approximation can be used to obtain a point estimate of the

parameters.

Because the inference in a hierarchical Bayesian model also includes the prior pa-

rameters φ, the tasks can “exchange information” via the prior. Optimally, the prior

p(wz|φ) captures parameter structures that are common to all tasks. For tasks with

only a few or no training examples the prior dominates the posterior and therefore the

task inherits the prior parameters learned from all other tasks. The more training data

is available for a task, the less influence the prior has on the posterior. If there is no

true common structure over all tasks or if the prior is not flexible enough to capture

this structure a hierarchical Bayesian model is likely to be inferior to separately trained

models without any interaction.

Hierarchical Bayesian modeling for multi-task learning is well studied in the machine

46 4 Multi-Task Learning

learning community. Heskes (2000) imposes a Gaussian prior on the parameters of

related neural network models. A Dirichlet process can serve as prior in a hierarchical

Bayesian model and cluster the tasks (Xue et al., 2007; Roy and Kaelbling, 2007); all

tasks in one cluster share the same model parameters. More flexibility gives a hierar-

chical Dirichlet process prior (Teh et al., 2006). Two (or even more) layers of Dirichlet

process priors are nested in a way that the single instances belonging to each task are

clustered and the cluster models can be shared across tasks.

Maximum entropy models sharing a common Laplacian prior are studied by

Dudik et al. (2007). Liu et al. (2008) derive a chain structured hierarchical Bayesian

model for multi-task learning on ordered tasks. The model parameters for each task

are assumed to be drawn from a mixture over the parameters of all previous tasks.

Evgeniou and Pontil (2004) discover a link between hierarchical Bayes and kernel learn-

ing with support vector machines. In Section 4.2.1 we give more details on this link

and show that the hierarchical Bayesian kernel gets a clean Bayesian interpretation by

choosing a logistic or a ridge regression instead of a support vector machine model.

Yu et al. (2005) and Schwaighofer et al. (2005) impose a normal-inverse Wishart hy-

perprior on the mean and covariance of a Gaussian process prior that is shared by all

task-specific regression functions. Mean and covariance of the Gaussian process are

estimated using the EM algorithm. In Section 4.2.3 we give more details on this model.

The same framework with t-processes instead of Gaussian processes leads to a multi-

task model that is more robust to outlier tasks (Yu et al., 2007). In Section 4.2.4 we

derive a nested version of the hierarchical Bayesian Gaussian process model for grouped

tasks.

Multi-task feature selection aims in sharing a sparse feature representation over all

tasks (Obozinski et al., 2007; Argyriou et al., 2007). Bi et al. (2008) show that these

methods can be casted as a hierarchical Bayesian model with Gaussian prior on the

task parameters and Wishart hyperprior.

4.2.1 Hierarchical Bayesian Kernel Learning

Evgeniou and Pontil (2004) describe a feature mapping and a kernel function for multi-

task learning with support vector machines. They argue that their model follows the

intuition of hierarchical Bayes but do not provide a probabilistic derivation. In this

section we show that a modified version of their model, with a logistic or squared loss

instead of a hinge loss, is equivalent to a hierarchical Bayesian model. In order to make

the derivations more concrete we choose a logistic loss in the following argumentation.

4.2 Hierarchical Bayesian Learning 47

The derivations carry over to the squared loss by replacing the logistic with a Gaussian

model for the data likelihood. For each task z we choose a logistic model p(y|x,wz) =

1/(1 + exp(−ywT
z x)) as likelihood function with binary label y ∈ {−1, 1}. We assume

the model parameters wz for each task z are drawn from a Gaussian prior wz ∼
N(w0, σ

2
wI) shared by all tasks. A Gaussian hyperprior on the mean w0 ∼ N(0, σ2

w0
I)

is imposed. The hyperparameters w0 correspond to φ of Equation 4.1. Prior and

hyperprior both have a scalar covariance matrix with fixed scalars σ2
w0

and σ2
w. The

following generative process summarizes the model:

1. Draw prior mean once from Gaussian hyperprior, w0 ∼ N(0, σ2
w0

I);

2. For all tasks z draw parameters from Gaussian prior, wz ∼ N(w0, σ
2
wI);

3. For each input vector x and task z independently draw label y using a logistic

model p(y|x,wz) = 1
1+exp(−ywT

z x)
.

In accordance with the generative process and Equation 4.3 the log-posterior of the

hyperparameters and all task parameters given the data is proportional to the log-

factorization of Equation 4.4. Equation 4.5 expands the density functions and drops

constant terms. We can express each task parameter wz by the prior mean w0 plus

an offset vector vz. We rewrite the log-posterior in terms of offset vectors vz with the

replacement wz = w0 + vz (Equation 4.6). In Equation 4.7 we introduce a new vector

v0 by replacing w0 with
σw0
σw

v0. Thus, the vector v0 is just the prior mean w0 rescaled

by a constant.

log p(w1, . . . ,wl,w0|L1, . . . , Ll, σ
2
w, σ2

w0
)

∝ log N(w0|0, σ2
w0

I) +
l∑

z=1

log N(wz|w0, σ
2
wI) +

l∑

z=1

∑

(x,y)∈Lz

log p(y|x,wz) (4.4)

∝ −||w0||2
2σ2

w0

−
l∑

z=1

||wz −w0||2
2σ2

w

−
l∑

z=1

∑

(x,y)∈Lz

log(1 + exp(−ywT

z x)) (4.5)

= −||w0||2
2σ2

w0

−
l∑

z=1

||vz||2
2σ2

w

−
l∑

z=1

∑

(x,y)∈Lz

log(1 + exp(−y(wT

0 x + vT

z x))) (4.6)

= −||v0||2
2σ2

w

−
l∑

z=1

||vz||2
2σ2

w

−
l∑

z=1

∑

(x,y)∈Lz

log

(

1 + exp

(

−y

(
σw0

σw

vT

0 x + vT

z x

)))

(4.7)

= −||v||
2

2σ2
w

−
∑

(x,y,z)∈L

log(1 + exp(−yvTΦ(x, z))) (4.8)

48 4 Multi-Task Learning

We introduce a vector v that is a concatenation of all parameter vectors, v =

[v0,v1, . . . ,vl]. For all training examples we map the pairs (x, z) of input features

and task identifier into a new feature space using the feature mapping Φ(x, z) defined

in Equation 4.9 (Evgeniou and Pontil, 2004).

Φ(x, z) =






σw0

σw

x,0, . . . ,0,
︸ ︷︷ ︸

1,...,z−1

x,
︸︷︷︸

z

0, . . . ,0
︸ ︷︷ ︸

z+1,...,l




 (4.9)

With this feature mapping each task receives its individual section in the new feature

space. For a training example from task z the original feature vector x is copied to

the range in the new feature space that belongs to task z, all other regions except

the first one are filled with zero vectors. All tasks share the first section in the new

feature space, task z = 1 receives the second segment, task z = 2 receives the third

segment, and so on. Applying the feature mapping and the substitution of v we reach

Equation 4.8. This is the objective function of a regular logistic regression with input

examples transformed by feature mapping Φ(x, z).

To sum up, the maximum of Equation 4.8 with respect to parameter vector v is

a MAP estimate for the parameters of a hierarchical Bayesian model with Gaussian

prior and hyperprior with fixed scalar covariance matrices. This maximum can be

obtained using a standard logistic regression with feature mapping Φ(x, z). Once the

logistic regression is trained, parameter v∗ and thereby the joint MAP estimate for all

parameters w∗
1, . . . ,w

∗
l ,w

∗
0 is available. A prediction for instance x of task z can be

obtained by y∗ = argmaxy 1/(1 + exp(−yv∗TΦ(x, z))).

The parameter vector v in Equation 4.8 has the dimensionality of x times l + 1.

Instead of optimizing over this potentially very high-dimensional space one can re-

sort to optimization in the dual space using a standard kernel logistic regression

(Zhu and Hastie, 2002). This reduces the number of parameters to the number of

training examples. In Equation 4.10 the kernel function for the kernel logistic regres-

sion is directly derived from Equation 4.9.

khBayes((x, z), (x′, z′)) = Φ(x, z)TΦ(x′, z′) =

(
σ2
w0

σ2
w

+ δ(z, z′)

)

xTx′ (4.10)

δ(z, z′) is the Kronecker delta. One can replace the linear kernel xTx′ on the right hand

side of Equation 4.10 with any non-linear kernel function k(x,x′).

4.2 Hierarchical Bayesian Learning 49

4.2.2 Hierarchical Bayes for Taxonomy Classification

In this section we prove that a well known model for taxonomy classification is a

nested hierarchical Bayesian model and explain how taxonomy classification is related

to multi-task learning.

Lafferty et al. (2001) introduce conditional random fields and thereby extend logistic

regression for structured and interdependent output variables. Conditional random

fields are based on a conditional exponential model of an output structure y given

input x and model parameters v,

p(y|x,v) =
exp(Φ(x,y)Tv)

∑

y′ exp(Φ(x,y′)Tv)
,

with an application specific input-output mapping Φ(x,y). The standard training

procedure is a MAP estimation with isotropic Gaussian prior on v. Optimization

Problem 4.1 trains a conditional random field by maximizing the log-posterior of the

model parameters v given training data and the prior variance σ2. The variable i

indexes the training examples.

Optimization Problem 4.1 Over parameters v, maximize

− ||v||
2

2σ2
+
∑

i



Φ(xi,yi)
Tv − log

∑

y′

expΦ(xi,y
′)Tv



 .

In taxonomy classification the goal is to assign objects with feature vector x to

nodes y in a label hierarchy. A conditional random field model is instantiated for

taxonomy classification by using the input-output mapping Φtax(x, y) of Equation 4.11

(Tsochantaridis et al., 2005). In taxonomy classification the output structure y reduces

to a node label y. Φ(x) is any suitable input mapping and ⊗ denotes the tensor product.

Φtax(x, y) = Φ(x)⊗ Λ(y). (4.11)

The function Λ(y) maps each node label to a binary vector with one element for each

node in the taxonomy. We denote such a single element for node y′ with Λy′(y) and

define it in Equation 4.12:

Λy′(y) =







1 if y′ lies on path from y to a root node

0 otherwise
(4.12)

50 4 Multi-Task Learning

The mapping Φtax(x, y) has a segment for each node in the taxonomy and copies the

vector Φ(x) to all segments corresponding to the nodes on the path from a root node

to y (including the segment for the root node and y itself). We assume that each node

has exactly one parent node in the taxonomy except for the root nodes.

We will now show that Optimization Problem 4.1 together with mapping Φtax(x, y)

can be derived from a nested hierarchical Bayesian model with the following generative

process, where R is the set of root nodes and l is the total number of nodes in the

taxonomy:

1. For all root nodes y ∈ R in the taxonomy draw parameter vector wy from an

isotropic Gaussian prior with zero mean, wy ∼ N(0, σ2I);

2. For all non-root nodes y /∈ R (nodes are assumed to be ordered by decreasing

distance to root nodes) draw parameter vector wy from a Gaussian prior with

the mean vector equal to the parents’ parameters, wy ∼ N(wπ(y), σ
2I), π(y) is

the parent node of y;

3. For each input vector x draw node label y using an exponential model

p(y|x,w1, . . . ,wl) =
exp(Φ(x)Twy)

∑

y′ exp(Φ(x)Twy′)
and a feature mapping Φ(x).

Following this generative process the log-posterior of all node parameters given train-

ing data L and variance σ2 is proportional to the log-factorization as shown in Equa-

tion 4.13.

log p(w1, . . . ,wl|L, σ2)

∝ log
∑

y∈R

N(wy|0, σ2I) +
∑

y/∈R

log N(wy|wπ(y), σ
2I) +

∑

i

p(yi|xi,w1, . . . ,wl) (4.13)

∝ −
∑

y∈R

||wy||2
2σ2

−
∑

y/∈R

||wy −wπ(y)||2
2σ2

(4.14)

+
∑

i



Φ(xi)
Twyi

− log
∑

y′

exp(Φ(xi)
Twy′)





= −
∑

y∈R

||vy||2
2σ2

−
∑

y/∈R

||vy||2
2σ2

(4.15)

+
∑

i




∑

j∈path(yi)

Φ(xi)
Tvj − log

∑

y′

exp




∑

j∈path(y′)

Φ(xi)
Tvj









= −||v||
2

2σ2
+
∑

i



Φtax(xi, yi)
Tv − log

∑

y′

expΦtax(xi, y
′)Tv



 (4.16)

4.2 Hierarchical Bayesian Learning 51

Equation 4.14 follows by expanding the density functions and dropping the constant

normalization terms. In Equation 4.15 we rewrite the expression in terms of offset

vectors vy with the replacement wy = wπ(y) + vy for all non-root nodes y /∈ R. Re-

member, that π(y) denotes the parent node of y. Within the sum over the training

data likelihoods this recursive replacement results in a sum over nodes j ∈ path(y).

path(y) is the set of nodes on the path from a root node to node y (including the root

and y). For a unified notation we also replace all parameters wy of root nodes y ∈ R

with vy.

We exemplify the recursive replacement for a specific node y two levels above from

a root node: In Equations 4.17 and 4.18 the first and second (recursive) replacements

are applied. Equation 4.19 replaces the parameter symbol for the root node and Equa-

tion 4.20 collects all parameters on the path from the root node to y.

wy = wπ(y) + vy (4.17)

= wπ(π(y)) + vπ(y) + vy (4.18)

= vπ(π(y)) + vπ(y) + vy (4.19)

=
∑

j∈path(y)

vj (4.20)

Equation 4.16 follows by applying the feature mapping of Equation 4.11 and by in-

troducing a vector v that is just the concatenation of all node parameter vectors,

v = [v1, . . . ,vl].

We observe that Equation 4.16 is identical to the objective function of Optimization

Problem 4.1 in combination with the input-output mapping of Equation 4.11. This

shows that training a conditional random field with the standard feature mapping for

taxonomy classification by Tsochantaridis et al. (2005) is equivalent to MAP estimation

of a hierarchical Bayesian model with nested Gaussian priors.

Based on this finding, hierarchical Bayesian models for taxonomy classification with

more flexible prior structures can be developed. For example, one can deviate from

using one fixed covariance matrix σ2I for all priors and learn different scalar parameters

σ2 for each node by imposing an inverse Gamma prior on the individual σ2.

The relationship of taxonomy classification to multi-task learning is the following. In

taxonomy classification a related set of node parameters, in multi-task learning a related

set of task parameters are estimated. The main difference is that for the inference over

one instance x in multi-task learning only the associated task parameters of one task are

used. In taxonomy classification the parameters of all nodes are involved and needed

52 4 Multi-Task Learning

for normalization of the conditional node probability (see step 3 of the above generative

process). The second difference is that multi-task learning is usually based on a flat

set of nodes in contrast to taxonomy classification with a hierarchical node structure.

The generative process of the taxonomy classification model is similar to the gen-

erative process of the multi-task model described in Section 4.2.1. The taxonomy

classification model can be considered as an extension of this multi-task model to a

hierarchical structure and with a different data likelihood function.

4.2.3 Hierarchical Bayes with Gaussian Processes

A stochastic process is called Gaussian process if any finite set or subset of random

variables belonging to the stochastic process are governed by a multivariate Gaussian

distribution. Gaussian processes can be used to define prior distributions over functions

of input variables. If a function is assumed to be drawn from a Gaussian process prior

and data drawn from this function is available, the resulting posterior over functions

is again a Gaussian process. Using a Gaussian process posterior, predictions for new

data can be obtained easily. Such a model can be used for nonparametric regression. A

thorough introduction to Gaussian processes is beyond the scope of this thesis. More

details on Gaussian processes can be found in Rasmussen and Williams (2006).

Schwaighofer et al. (2005) follow the hierarchical Bayesian paradigm and impose one

Gaussian process prior on the functions of several related tasks. They want to find

a MAP estimate of the shared prior and observe that if this estimate is based on

a finite number of training examples, the Gaussian process prior over a continuous

input domain can be replaced by a Gaussian process prior over a finite number of input

locations and this is equivalent to a regular multivariate Gaussian distribution N(µ,K)

as common prior. For MAP inference only the mean µ and covariance matrix K of this

Gaussian distribution need to be estimated and they are assumed to be governed by a

normal-inverse Wishart (NIW) hyperprior. The NIW distribution is a natural choice

because it is the conjugate prior for the multivariate Gaussian distribution.

The function for task z drawn from the shared Gaussian prior N(µ,K) is a vector

fz over function values for all training examples in L. For task z the function value

for training instance i is denoted by fzi. Analogously, µ and K are mean vector and

covariance matrix over all input locations x in L. The generative process underlying

the hierarchical Bayesian model for a given set of training inputs is the following:

1. Draw mean vector and covariance matrix once from a normal-inverse Wishart

hyperprior, (µ,K) ∼ N(µ|0, 1
πK)IW (K|τ, κ−1), given fixed scalars π, τ , and

4.2 Hierarchical Bayesian Learning 53

matrix κ;

2. For each task z, independently draw vector with function values fz from common

prior, fz ∼ N(µ,K);

3. For all tasks z and all input vectors xi from Lz, yi = fzi + ǫ, where ǫ ∼ N(0, σ2).

Schwaighofer et al. use an expectation maximization (EM) algorithm

(Dempster et al., 1977) to obtain a MAP estimate for the prior parameters, (µ∗,K∗) =

argmaxµ,K p(µ,K|L, σ2, π, τ, κ). Besides the three scalar parameters σ2, π, and τ the

scale matrix κ needs to be specified. This matrix can be any suitable positive defi-

nite kernel matrix over the training data, e.g.: linear, polynomial, rbf, etc. With this

hierarchical Bayesian model the learned Gaussian process prior is only defined over a

discrete set of inputs. If a test instance is not included in this discrete set, predictions

are not directly available. In a transductive manner one can add the test instances

to the training data with all labels set to zero so that the labels do not influence the

learned prior but are included in the discrete input domain of the Gaussian process prior

(Schwaighofer et al., 2005). Yu et al. (2005) introduce a modification to the model that

can handle out-of-sample predictions.

The derivation of an EM algorithm for an extended version of the model with an

additional layer can be found in the next section and in Appendix C.

4.2.4 Nested Hierarchical Bayes with Gaussian Processes

The multi-task model of Schwaighofer et al. (2005) described in the previous section

can be used to model related regression functions with homogeneous relationships be-

tween the functions/tasks. In some applications the tasks are grouped, for example, in

collaborative filtering each user can be modeled as a separate task (Schwaighofer et al.,

2005) and the tasks can be grouped by gender. Users in the male group might be

more similar to other males than to females. Another example is the prediction of the

outcome of similar therapies (modeled as tasks) for patients that can be grouped by

country. More details on this application can be found in Section 4.5.

In the following, we derive a new nested hierarchical Bayesian model for multi-task

learning with grouped tasks. In this model the tasks in each group share a group-

specific prior and all group priors share one global prior. The model extends the model

of Schwaighofer et al. (2005) by inserting an additional layer for the group prior. The

parameters (µ,K) of a global Gaussian process prior are again drawn from a normal-

inverse Wishart hyperprior. Following the same reasoning as in the previous section,

54 4 Multi-Task Learning

functions are defined over a discrete input domain of all training input locations. Such

functions can be described by vectors over function values. For each group k, a vector

of function values gk is drawn from the global prior distribution N(µ,K). This function

gk is used as mean function for a group-specific Gaussian process prior N(gk,K). From

the latter the task functions fkz are drawn. Single elements in this function vector are

denoted by fkzi. The complete generative model is the following:

1. Draw mean vector and covariance matrix once from a normal-inverse Wishart

hyperprior, (µ,K) ∼ N(µ|0, 1
πK)IW (K|τ, κ−1), given fixed scalars π, τ , and

matrix κ;

2. For each group k independently draw vector with function values gk ∼ N(µ,K);

3. For each task z in group k independently draw vector with function values fkz ∼
N(gk,K);

4. For all tasks z and all input vectors xi from Lz, yi = fkzi + ǫ, where ǫ ∼ N(0, σ2).

We want to find the model parameters with maximum posterior probability given

the data and the hyperprior parameters. This posterior is shown on the left hand

side of Equation 4.21. The posterior is proportional to the joint distribution of prior

parameters and the vector over all outputs y given the matrix over all input vectors

X and the hyperprior parameters (right hand side of Equation 4.21). Equation 4.22

expands this joint distribution according to the generative process. For parameter

inference we maximize Equation 4.22 with respect to the prior parameters by using the

expectation maximization updates given in Theorem 4.1.

log p(µ,gk,K|L, σ2, π, τ, κ)

∝ log p(µ,gk,K,y|X, σ2, π, τ, κ) (4.21)

=
∑

k

∑

z∈
group k

log

∫

N(fkz|gk,K)
∏

i∈Lz

N(yi|fkzi, σ
2)dfkz (4.22)

+ log N(µ|0,
1

π
K) + log IW (K|τ, κ−1) +

∑

k

log N(gk|µ,K)

Theorem 4.1 The EM update steps for finding a local optimum of Equation 4.22 are

the following:

• E-step: Compute expectation and covariance matrix of hidden variables for all

4.3 Overview on other Multi-Task Models 55

groups k and tasks z,

E [fkz] = K∗,kz

(
Kkz,kz + σ2I

)−1
(ykz − gkz) + gk,

Cov[fkz] = K−K∗,kz

(
Kkz,kz + σ2I

)−1
KT

∗,kz.

• M-step: Compute new mean functions for all groups k,

gk =

∑

z∈group k

E [fkz] + µ

|z ∈ group k|+ 1
,

and compute new prior parameters,

µ =

∑

k gk

|groups|+ π
,

K =




∑

k

∑

z∈group k

(

Cov[fkz] + (E[fkz]− gk) (E[fkz]− gk)
T

)

+τκ +
∑

k

(gk − µ) (gk − µ)T
)

1

τ + |tasks|+ |groups| .

The proof can be found in Appendix C.

As discussed in the previous section, predictions can be obtained in a transductive

manner by including the test examples in the inference process with labels set to zero

or by using the out-of-sample extension proposed in Yu et al. (2005). The model can

be easily extended to deeper hierarchies of tasks.

4.3 Overview on other Multi-Task Models

One obvious strategy for multi-task learning is to learn independent models for each

task z by minimizing an appropriate loss function on the portion of Lz = {(xi, yi, zi) ∈
L : zi = z}. The other extreme could be a one-size-fits-all model f∗(x) trained on the

entire sample L.

Beyond these two simple approaches and beside hierarchical Bayesian models several

other methods for multi-task learning are studied in the machine learning community.

In one of the earliest papers Caruana (1997) studies neural network models in which

tasks share hidden nodes. He also describes a regression model that is learned by opti-

mizing an objective on the target task’s data combined with a down-weighted objective

over data from auxiliary tasks. In a similar approach by Wu and Dietterich (2004) a

56 4 Multi-Task Learning

fixed scalar weight controls the influence of examples from one auxiliary task in the

objective of a support vector machine. The differences to the model that we derive in

Section 4.4 are that we introduce weights on the instance-level instead of the task-level

and we derive weights to match the distribution of the target task.

The model of Liao et al. (2005) decreases the influence of instances from an auxiliary

task that incur a large loss in a model trained over data from both (target and auxiliary)

tasks. Intuitively, this heuristic should down-weight auxiliary instances that disagree

with the target instances. Kaski and Peltonen (2007) make the assumption that the

target data are entirely drawn from a target model and the data from auxiliary tasks

are drawn from a mixture of the target model and auxiliary task specific models. The

mixture weights are estimated along with all model parameters. This model has the

advantage that each auxiliary task can have a different influence on the target model

depending on the similarity of the respective auxiliary task to the target task. Very

dissimilar auxiliary tasks can even have no influence on the target model.

In many applications, task-level descriptions or prior knowledge on task similarity

encoded in a task kernel are available. Bonilla et al. (2007) study an extension of the

one-size-fits-all model and find that training with a kernel defined as the multiplica-

tion of an input feature kernel and a task-level kernel outperforms a gating network.

Task-level features have also been utilized for task clustering and for a task-dependent

prior on the model parameters (Bakker and Heskes, 2003). Instead of relying on prior

knowledge on task similarity, the model of Bonilla et al. (2008) explicitly estimates

inter-task correlations in a Gaussian process prior.

In another line of research a common transformation matrix is learned that maps the

input features from all tasks into a latent space (Ando and Zhang, 2005; Zhang et al.,

2005). In the transformed space each task is treated independently as a separate

learning problem.

4.4 Multi-Task Learning by Distribution Matching

All models for multi-task learning described in the previous sections make assumptions

on the relationship between tasks. Usually, some shared prior or other shared model

structure is assumed. In this section we develop a new model that does not require any

assumption on the relationship between tasks. The model is based on rescaling weights

that match the mixture distribution over all tasks to the distribution of any specific

task (Section 4.4.1). A reformulation of the rescaling weights results in a discriminative

expression (Section 4.4.2) that can be estimated with logistic regression (Section 4.4.3).

4.4 Multi-Task Learning by Distribution Matching 57

After the estimation of rescaling weights a target model on the weighted data from all

tasks is learned (Section 4.4.4).

4.4.1 Definition of Rescaling Weights

In learning a classifier ft(x) for target task t, we seek to minimize the loss function

with respect to p(x, y|t). Both, t and z are values of the random variable task; value

t identifies the current target task. Simply pooling the available data for all tasks

would create a sample governed by
∑

z p(z)p(x, y|z). Our approach now is to create

a task-specific rescaling weight rt(x, y) for each element of the pool of examples. The

rescaling weights match the pool to the target distribution p(x, y|t). The weighted

sample is governed by the correct target distribution, but is still larger as it draws from

the sample pool over all tasks. Instead of rescaling each example in the pool, one can

resample the pool based on the rescaling weights. The expected weighted loss with

respect to the mixture distribution that governs the pool equals the loss with respect

to the target distribution p(x, y|t). Equation 4.23 defines the rescaling weights.

E(x,y)∼p(x,y|t)[ℓ(f(x, t), y)] = E(x,y)∼
∑

z p(z)p(x,y|z) [rt(x, y)ℓ(f(x, t), y)]

In the following, we will show that

rt(x, y) =
p(x, y|t)

∑

z p(z)p(x, y|z)

satisfies Equation 4.23. Equation 4.23 expands the expectation and introduces a frac-

tion that equals one. Equation 4.24 expands the sum over z in the numerator to run over

the entire expression because the integral over (x, y) is independent of z. Equation 4.25

is the expected loss over the distribution of all tasks weighted by p(x,y|t)
∑

z p(z)p(x,y|z) .

E(x,y)∼p(x,y|t)[ℓ(f(x, t), y)]

=

∫ ∑

z p(z)p(x, y|z)
∑

z′ p(z′)p(x, y|z′)p(x, y|t)ℓ(f(x, t), y)dxdy (4.23)

=

∫
∑

z

(

p(z)p(x, y|z)
p(x, y|t)

∑

z′ p(z′)p(x, y|z′)ℓ(f(x, t), y)

)

dxdy (4.24)

= E(x,y)∼
∑

z p(z)p(x,y|z)

[
p(x, y|t)

∑

z′ p(z′)p(x, y|z′)ℓ(f(x, t), y)

]

(4.25)

Equation 4.25 signifies that we can train a hypothesis for task t by minimizing the

expected loss over the distribution of all tasks weighted by rt(x, y). This amounts to

minimizing the expected loss with respect to the target distribution p(x, y|t).

58 4 Multi-Task Learning

Equation 4.25 leaves us with the problem of estimating the joint density ratio

rt(x, y) = p(x,y|t)
∑

z p(z)p(x,y|z) . One might be tempted to train density estimators for p(x, y|t)
and

∑

z p(z)p(x, y|z). However, obtaining estimators for potentially high-dimensional

densities is unnecessarily difficult because ultimately only a scalar weight is required

for each example.

4.4.2 Discriminative Formulation of Weights

In this section, we derive a discriminative model that directly estimates the rescaling

weights rt(x, y) = p(x,y|t)
∑

z p(z)p(x,y|z) without estimating the individual densities. We refor-

mulate the density ratio p(x,y|t)
∑

z p(z)p(x,y|z) in terms of a conditional model p(t|x, y). This

conditional has the following intuitive meaning: Given that an instance (x, y) has been

drawn at random from the pool
⋃

z Lz = L of samples for all tasks (including Lt); the

probability that (x, y) originates from Lt is p(t|x, y). The following equations assume

that the prior on the size of the target sample is greater than zero, p(t) > 0. In Equa-

tion 4.27 Bayes’ rule is applied twice and in Equation 4.28 p(x, y) and p(z) are canceled

out. Equation 4.29 follows by
∑

z p(z|x, y) = 1.

rt(x, y) =
p(x, y|t)

∑

z p(z)p(x, y|z)
(4.26)

=
p(t|x, y)p(x, y)

p(t)

1
∑

z p(z)p(z|x,y)p(x,y)
p(z)

(4.27)

=
p(t|x, y)

p(t)
∑

z p(z|x, y)
(4.28)

=
p(t|x, y)

p(t)
(4.29)

The significance of Equation 4.29 is that it shows how the rescaling weights rt(x, y) =
p(x,y|t)

∑

z p(z)p(x,y|z) can be determined without knowledge of any of the task densities p(x, y|z).

The right hand side of Equation 4.29 can be evaluated based on a model p(t|x, y) that

discriminates labeled instances of the target task against labeled instances of the pool

of examples for all tasks. Intuitively, p(t|x, y) characterizes how much more likely (x, y)

is to occur in the target distribution than it is to occur in the mixture distribution of

all tasks. Instead of potentially high-dimensional densities p(x, y|t) and p(x, y|z), a

conditional distribution with a single variable needs to be modeled. One can apply any

probabilistic classifier to model this conditional distribution.

4.4 Multi-Task Learning by Distribution Matching 59

4.4.3 Logistic Model for Weights

We model p(t|x, y) of Equation 4.29 for all tasks jointly with a multinomial logistic

model (the multi-class generalization of the logistic model, also known as soft-max

model) with model parameters v, displayed in Equation 4.30. The parameter vector

v is a concatenation of task-specific subvectors vz, one for each task z. With this

model an estimate for p(t|x, y) is given by p(z = t|x, y,v); this is the evaluation of the

multinomial logistic model with respect to task t.

p(z|x, y,v) =
exp(vT

z Φ(x, y))
∑

z′ exp(vT

z′Φ(x, y))
(4.30)

Equation 4.30 requires a problem-specific feature mapping Φ(x, y). We define this

mapping for binary labels y ∈ {1,−1} in Equation 4.31; δ is the Kronecker delta.

In the absence of prior knowledge about the similarity of classes, input features x of

examples with different class labels y are mapped to disjoint subsets of the feature

vector.

Φ(x, y) =




δ(y, 1)Φ(x)

δ(y,−1)Φ(x)



 (4.31)

With this feature mapping the models for positive and negative examples do not interact

and can be trained independently.

For training of the multinomial logistic model we maximize the regularized log-

likelihood of the data. Prior knowledge on the similarity of tasks in the form of a

positive semi-definite kernel function k(z, z′) can be be encoded in the covariance ma-

trix of a Gaussian prior N(0, Σ) on parameter vector v. We set all main diagonal

entries of Σ to the scalar parameter σ2
v and set the secondary diagonal entries corre-

sponding to the covariances between vz and v′
z to k(z, z′)ρσ2

v (assuming kernel values

0 ≤ k(z, z′) ≤ 1). Parameter σ2
v specifies the variance of each element in v. k(z, z′)ρ

is the correlation coefficient between elements of subvectors vz and v′
z; parameter ρ

specifies the strength of this correlation. The covariance matrix Σ is required to be

invertible and therefore 0 ≤ ρ < 1. All other entries of Σ are set to zero. When prior

knowledge on the task similarities is encoded in the prior on the model parameters,

then this prior knowledge dominates the optimization criterion for small samples while

the data-driven portion of the criterion becomes dominant and overrides prior beliefs

as more data arrives.

60 4 Multi-Task Learning

Optimization Problem 4.2 Over parameters v, maximize

∑

(xi,yi,zi)∈L

log p(zi|xi, yi,v)− vTΣ−1v.

The solution of Optimization Problem 4.2 is a maximum a posteriori estimation of the

multinomial logistic model (Equation 4.30) over the model parameters v using a log-

Gaussian prior with covariance matrix Σ. Tasks with no training examples are covered

naturally in Optimization Problem 4.2. In this case, the Gaussian prior with the task

kernel k(z, z′) encoded in the covariance matrix determines the model.

For our experiments we use a kernelized variant of Optimization Problem 4.2 by

applying the representer theorem. Details on the kernelization of multi-class logistic

regression can be learned from Zhu and Hastie (2002).

4.4.4 Weighted Empirical Loss and Target Model

The multi-task learning procedure first determines rescaling weights rz(x, y) for all

tasks and instances by solving Optimization Problem 4.2. In this section we describe

the second step of training an array of target models, one for each task, using weighted

examples. This two-stage procedure for multi-task learning corresponds to the two-

stage approximation for learning under covariate shift described in Section 3.5.

With the results of Optimization Problem 4.2 the discriminative expression for the

weights of Equation 4.29 can be estimated. Using these weights we can evaluate the

expected loss over the weighted training data as displayed in Equation 4.32. It is the

regularized empirical counterpart of Equation 4.25.

E(x,y)∼L

[
p(t|x, y,v)

p(t)
ℓ(f(x, t), y)

]

+
wT

t wt

2σ2
w

(4.32)

An instance of Optimization Problem 4.3 is solved for each task independently to pro-

duce a separate model for this task. Optimization Problem 4.3 minimizes Equation 4.32,

the weighted regularized loss over the training data using a standard log-Gaussian prior

with variance σ2
w on the parameters wt. Each example is weighted by the discrimina-

tively estimated density fraction from Equation 4.29 using the solution of Optimization

Problem 4.2.

Optimization Problem 4.3 For task t: over parameters wt, minimize

1

|L|
∑

(xi,yi)∈L

p(t|xi, yi,v)

p(t)
ℓ(f(xi,wt), yi) +

wT
t wt

2σ2
w

.

4.5 Case Study: HIV Therapy Screening 61

4.5 Case Study: HIV Therapy Screening

In this section we conduct a case study on multi-task learning for the problem of

predicting the therapeutic success of a given combination of drugs for a given strain of

the Human Immunodeficiency Virus-1 (HIV-1). HIV is associated with the acquired

immunodeficiency syndrome (AIDS). Being a disease that claimed more than 25 million

lives since 1981, AIDS is one of the most destructive epidemics in recorded history.

Currently there are more than 33 million people infected with HIV (UNAIDS/WHO,

2007).

Antiretroviral therapy is hampered by HIV’s strong ability to mutate and develop

viral quasi-species that can quickly be dominated by resistant variants. In order to

decide on a course of therapy, virus samples taken from each individual patient are

tested for a set of resistance-relevant mutations. Given this set of identified mutations

together with the patient’s medication history, a medical practitioner needs to decide

which combination of drugs to administer. The large number of genetic mutations

and the wide array of available drug combinations render the process of predicting the

success of a potential therapy difficult, at best, for a human doctor.

Historic treatment records of HIV patients cover only a small portion of all possible

drug combinations. For many of these combinations, only few treatments have been

recorded. This scarceness of training data precludes separate training of a powerful

prediction model for each combination from only records of treatments which used the

same drug combination. Distinct combinations can have similar effects when they inter-

sect in jointly contained drugs, or when they include drugs that use similar mechanisms

to affect the virus. Therefore, in order to predict the outcome of a given drug combi-

nation, it is desirable to exploit data from related combinations and thereby achieve

generalization over both virus mutations and combinations of drugs.

Prior approaches to HIV therapy screening do not account for the similarities of

drug combinations in a principled way. Larder et al. (2007) tackle the problem of pre-

dicting virological response to a given HIV drug combination with neural networks.

Lathrop and Pazzani (1999) apply combinatorial optimization to the same problem

using features extracted from the viral genotype and the drugs in the combination.

Altmann et al. (2007) approach the problem by including various phenotypic informa-

tion and an estimate of future evolutionary development of the virus in the learning

process.

The application problem of HIV therapy screening instantiates the abstract problem

setting of multi-task learning as follows. Input x describes the genotype of the virus that

62 4 Multi-Task Learning

a patient carries, together with the patient’s treatment history. Genotype information

is encoded as a binary vector indicating the presence and absence of each out of a

predefined set of resistance-relevance mutations, respectively. The treatment history

can be represented as a binary vector indicating which drugs have been administered

over the course of past treatments. A candidate combination of drugs plays the role

of the task z: each task has an associated binary vector that indicates a set of drugs

that a medical practitioner is currently giving consideration. The binary class label y

indicates whether the therapy will be successful.

In addition to training data, we have prior knowledge on the similarity of tasks

which is encoded in a kernel function k(z, z′). Prediction models for different drug

combinations can be similar because the sets of drugs intersect (we will later refer to

this as the drug feature kernel), or because similar sets of mutations in the virus render

the drugs in the set ineffective (mutation table kernel).

In the next subsections we describe the data sets (Section 4.5.1), reference methods

(Section 4.5.2), experimental setup (Section 4.5.3), and the empirical results of our

study (Section 4.5.4).

4.5.1 Data Sets and Prior Knowledge on Task Similarity

We use data from the EuResist project (Rosen-Zvi et al., 2008). The data set comprises

a total number of 52846 treatment records from the treatment histories of 16999 HIV

patients treated in hospitals in the period of 1977 through 2007.

We use two different definitions of therapeutic success and failure to tag the data:

virus load labeling and multi-conditional labeling.

According to our virus load labeling definition a therapy is successful if the viral

load (number of virus copies per ml blood plasma, cp/ml) drops below the established

level of virus detection of 400 cp/ml during the time of the treatment. Otherwise the

treatment is a failure. In multi-conditional labeling, a therapy is successful if the viral

load measured in the time range between 28 and 84 days after the start of the therapy

decreases by at least 2 orders of magnitude compared to the most recent viral load

measured one to three months before the start of the therapy, or the viral load drops

below 400 cp/ml 56 days after the start of the therapy. A drawback of this definition

is that due to the strict time intervals it imposes on the measurements, class labels

that adhere to this labeling are only available for a small number of records. The virus

load labeling does not require these strict time intervals by making use of any viral load

measurement during the course of therapy to label it.

4.5 Case Study: HIV Therapy Screening 63

 50

 100

 150

 200

 250

1 2 3
-4

5
-8

9
-1

6

1
7

-3
2

3
2

-6
4

>
6

4

1 2 3
-4

5
-8

9
-1

6

1
7

-3
2

3
2

-6
4

>
6

4

n
u

m
b

e
r

o
f

d
ru

g
 c

o
m

b
in

a
ti
o

n
s

number of treatment records for drug combination

multi-condition data setvirus load data set

Figure 4.1: Histogram over number of treatment records for drug combinations (tasks) in the
virus load data set (left) and multi-condition data set (right).

Out of all available treatment records we extract two different data sets using the two

labelings. With the virus load labeling we extract 3260 and with the multi-conditional

labeling 2011 treatment records with corresponding ratios of 65.7% and 64.1% successful

treatments. The size of these data sets is much smaller than the size of the original

data due to missing viral load measurements, or missing virus sequence information.

A number of 545 distinct drug combinations (tasks z) occur at least once in the virus

load data set; 433 occur in the the multi-conditional data set. The histogram over

sample sizes per task is displayed in Figure 4.1. For many combinations, only a few

examples occur in the data. For instance, in the virus load data set we observe 253 out

of 545 drug combinations with only one data point and 411 with less than 5 instances.

Similarly, the multi-conditional data set has 213 out of 433 drug combinations with a

single data point and 331 with less than 5 observations.

We extract two types of features for each instance: a genotypic description of the

virus and information about the treatment history of the patient. We use the vi-

ral genotype taken from the patient shortly before the treatment and represent it by

a binary vector indicating the presence of resistance-relevant mutations of the viral

sequence (Johnson et al., 2007). Drug-resistant viral quasi-species evolve during the

course of the treatment due to selective pressure imposed by the drug. As they remain

in the patient’s body, the treatment history plays an important role for predicting the

outcome of a potential treatment. Hence, we extract all drugs given to the patient in

previous treatments and use a binary vector representation with a one entry for each

drug given to the patient in the treatment history. The 82-dimensional feature vector

x for each data point results from the concatenation of 65 genotypic and 17 historic

64 4 Multi-Task Learning

treatment features.

We have prior knowledge about the similarity of combinations and encode this knowl-

edge into two different task similarity kernels k(z, z′). The binary drug indicator vector

has an entry for each drug; entries of one indicate the presence of a drug in the com-

bination. The drug indicator kernel is the inner product between the normalized drug

indicator vectors of two combinations. The mutation table kernel is based on tables

about the resistance-associated mutations of single drugs (Johnson et al., 2007). We

construct binary vectors indicating resistance-relevant mutations for the set of drugs

occurring in a combination. The kernel computes the normalized inner product between

such binary vectors for two drug combinations.

4.5.2 Reference Methods

The first reference method is training of a separate logistic regression model for each

task without any interaction (“separate”). Tasks without any training examples get a

constant classifier that assigns each test example with 50% to each of both classes.

The next baseline is a one-size-fits-all model; all examples are pooled and only one

common logistic regression is trained for all tasks (“pooled”). For the experiments with

prior knowledge on task similarity we multiply the feature kernel with the task kernel

values k(x,x′)(k(z, z′)+1) and train one model using this kernel (Bonilla et al., 2007).

We include a “+1” term to ensure that the feature kernel does not vanish.

The third reference method (“hier. Bayes kernel”) is a logistic regression with the

hierarchical Bayesian kernel of Equation 4.10 described in Section 4.2.1. For the ex-

periments with task similarity kernel the hierarchical Bayesian and the task kernel are

multiplied. As second hierarchical Bayesian method (“hier. Bayes Gauss. proc.”) we

use the Gaussian process regression of Section 4.2.3.

Last but not least we apply our new nested hierarchical Bayesian model for Gaus-

sian processes (“nested hier. Bayes Gauss. proc.”) that requires prior knowledge on

task groups (Section 4.2.4). We use the country of residence of patients as grouping

criterion. Thus, the three groups in our data are Italy, Germany, and Sweden. Our

intuition is that the effect of treatments on the virus and the health of patients differs

between countries because of different overall health care conditions, different education

of doctors, or different climate conditions. We also considered the reversed structure

with one group for each drug combination and each group has three sub-tasks, one for

each country. We do not report on these results because initial experiments revealed

that the model structure with grouping by country achieves better results.

4.5 Case Study: HIV Therapy Screening 65

4.5.3 Experimental Setup

In our experiments we study the benefit of distribution matching for HIV therapy

screening compared to the reference methods described in Section 4.5.2. Optimization

Problem 4.2 is solved with limited-memory BFGS and Optimization Problem 4.3 with

Newton gradient descent using a logistic loss. For the prior term p(t) required in

Optimization Problem 4.3 we use a MAP estimate |Lt|+γ
∑

z(|Lz |+γ) with a symmetric Dirichlet

prior. We use RBF kernels for all methods.

We apply a training-test split of the data consistent with the dates of the treatment

records. We sort the treatment records by date and use the first 80% of the records

as training data and the last 20% as test data. This procedure yields 653 and 403

test examples for the virus load and multi-conditional data set, respectively. The

date consistent split is necessary because new drugs get approved over time, and under

pressure of new drugs the viral population evolves. In such environments, the prediction

models should be able to learn from data seen in the past and perform well on unseen

data in the future.

We tune the prior and regularization parameters of all methods, the Dirichlet pa-

rameter γ, and the variance of the RBF kernels on tuning data resulting from a date

consistent split of the training data.

4.5.4 Results

The evaluation measure is the accuracy of predicting the correct label (success or failure

of a treatment) on the test set. Table 4.1 shows the results of the prediction accuracy for

all methods over both data sets without and with two different types of prior knowledge

on combination similarity. The columns “se.∆” placed next to the accuracy columns

display the standard error of the differences to the distribution matching method.

Multi-task learning by distribution matching outperforms, or is as good as, the best

alternative method in all cases. The improvement over the separate model baseline is

about 10-14%. We can reject the null hypothesis that the pooled and the hierarchical

Bayesian kernel baseline is at least as accurate as distribution matching in four and five

cases respectively out of six according to a paired t-test at α = 0.05. The differences

between the hierarchical Bayesian Gaussian process and our new nested variant with

grouping by country are not significant. We assume the differences between countries

are not distinct enough.

For distribution matching, prior knowledge does not improve the accuracy. The

pooled baseline benefits from prior knowledge for the multi-condition data set. For

66 4 Multi-Task Learning

Table 4.1: Classification accuracies with standard errors of differences to distribution match-
ing method (se.∆). Three different types of prior knowledge are used (none, drug.feat., or
mut.table). Symbols (•,◦,∗,⋄,⊲) indicate statistical significance according to a paired t-test
with significance level α = 0.05, (•) compared to separate baseline, (◦) compared to pooled
baseline, (∗) compared to hierarchical Bayesian kernel baseline, (⋄) compared to hierarchical
Bayesian Gaussian process baseline, (⊲) compared to nested hierarchical Bayesian Gaussian pro-
cess baseline. Results for the Gaussian process models with prior knowledge are not reported
because it is unclear how to exploit this knowledge in a principled way for these models.

virus load data set

prior knowledge

method none se.∆ drug.feat. se.∆ mut.table se.∆

separate 67.87% 1.80 67.87% 1.76 67.87% 1.78

pooled 75.00% 1.47 75.46% 1.39 75.61% 1.37

hier. Bayes kernel 76.69% 1.39 75.31% 1.34 76.84% 1.16

hier. Bayes Gauss. proc. 75.92% 1.32 – – – –

nested hier. Bayes Gauss. proc. 76.07% 1.30 – – – –

distribution matching 79.14% • ◦ ∗ ⋄ ⊲ 77.91% • ◦ ∗ 79.29% • ◦ ∗

multi-condition data set

prior knowledge

method none se.∆ drug.feat. se.∆ mut.table se.∆

separate 64.64% 2.41 64.64% 2.29 64.64% 2.38

pooled 76.67% 1.13 78.41% 1.63 78.66% 1.11

hier. Bayes kernel 77.17% 1.29 75.19% 1.44 77.42% 1.24

hier. Bayes Gauss. proc. 76.43% 1.35 – – – –

nested hier. Bayes Gauss. proc. 76.43% 1.44 – – – –

distribution matching 79.40% • ◦ ∗ ⋄ ⊲ 78.16% • ∗ 79.16% •

the case without prior knowledge we do not observe a statistically significant difference

between the three hierarchical Bayesian methods, but they are all significantly worse

than distribution matching according to the paired t-test. We do not report on results

of the Gaussian process models with prior knowledge on task similarity because it is

unclear how to exploit this knowledge in a principled way. Note that the Gaussian

process methods are regression models; all other methods are classification models.

Figure 4.2 displays the accuracy over the combinations in the test set grouped by

the number of available examples for the settings without and with the mutation table

kernel. For instance, an accuracy of 74% for the first group “0-2” means, that only test

4.5 Case Study: HIV Therapy Screening 67

distribution matching
pooled

hier. Bayes kernel
hier. Bayes Gauss. proc.

nested hier. Bayes Gauss. proc.
separate

 0.5

 0.6

 0.7

 0.8

 0.9

0-2 3-9 10-38 >38

a
c
c
u

ra
c
y

training examples for target combination

virus load data set, no prior knowledge

 0.5

 0.6

 0.7

 0.8

 0.9

0-1 2-5 6-20 >20

a
c
c
u

ra
c
y

training examples for target combination

multi-condition data set, no prior knowledge

 0.5

 0.6

 0.7

 0.8

 0.9

0-2 3-9 10-38 >38

a
c
c
u

ra
c
y

training examples for target combination

virus load data set, mut. table kernel

 0.5

 0.6

 0.7

 0.8

 0.9

0-1 2-5 6-20 >20

a
c
c
u

ra
c
y

training examples for target combination

multi-condition data set, mut. table kernel

Figure 4.2: Accuracy over different number of training examples for target combination; virus
load data set (left), multi-condition data set (right). Error bars indicate the standard error
of the differences to distribution matching. The key can be found in the box right above the
diagrams.

examples from combinations are selected that have zero, one, or two training examples

each, and the accuracy on this subset of the test examples is 74%. Each of the four

groups covers about the same number of test examples. The error bars indicate the

standard error of the differences to the distribution matching method. Note, that the

statistical tests described above are based on all test data and are not directly related

to the group-specific error bars in the diagrams.

All methods benefit from larger numbers of training examples per drug combination.

The slightly decreasing accuracy for the virus load data set with “>38” training exam-

68 4 Multi-Task Learning

ples is surprising. Further analysis reveals that in this case there is an accumulation

of test examples with history profiles very different from the training examples of the

same combination.

For all methods that generalize over the tasks the benefit compared to the separate

model baseline is the largest for the smallest group (“0-2” and “0-1” training examples

respectively).

4.6 Conclusion

We showed that the well known multi-task model of Evgeniou and Pontil (2004) can be

directly derived from a hierarchical Bayesian model when the hinge loss is replaced with

a logistic or squared loss. Similarly, we discovered that a standard taxonomy classifica-

tion model based on a conditional random field can be derived from a nested hierarchical

Bayesian model. This derivation opens up the way for more flexible taxonomy classifi-

cation models. We derived a nested hierarchical Bayesian model for Gaussian processes

that can be applied to multi-task learning with grouped tasks.

We devised a multi-task learning method that centers around rescaling weights which

match the distribution of the pool of examples of multiple tasks to the target distribu-

tion for a given task at hand. The method creates a weighted sample that reflects the

desired target distribution and exploits the entire corpus of training data for all tasks.

We showed how appropriate weights can be obtained by discriminating the labeled

sample for a given task against the pooled sample. After weighting the pooled sam-

ple, a classifier for the given task can be trained. In our experiments on HIV therapy

screening we found that the distribution matching method improves on the prediction

accuracy over independently trained models by 10-14%. According to a paired t-test,

distribution matching is significantly better than the reference methods for 19 out of

22 experiments.

A combination of drugs is the standard way of treating HIV patients. The accuracy

to which the likely outcome of a combination therapy can be anticipated can therefore

directly impact the quality of HIV treatments.

5 Multi-Task Learning under Covariate

Shift

In the previous chapter we studied multi-task learning where the training and the test

data for each task are both drawn from an identical task-specific distribution. We

now consider the case when the training data for each task is drawn from a training

distribution distinct from the test distribution. For each task, small—possibly even

empty—labeled samples and large unlabeled samples are available. While the unlabeled

samples reflect the target distribution, the labeled samples may be biased. This setting

naturally arises when the labels for each task are collected by a selective process such as

by questionnaires that can be ignored or refused by potential participants of a survey.

We derive a solution that produces rescaling weights which match the pool of all

training examples to the test distribution of any given task. The conceptual idea is

similar to the distribution matching methods of Chapters 3 and 4 but here, covariate

shift within each task and joint input-output shift across tasks need to be accounted

for.

The outline of this chapter is the following. We begin with a definition of the problem

setting in Section 5.1. In Section 5.2 we devise a distribution matching method that

accounts for covariate shift and joint input-output shift. A case study on targeted

advertising is presented in Section 5.3. Section 5.4 concludes the chapter.

5.1 Problem Setting

We consider the following multi-task learning scenario. Each of several tasks z is

characterized by an unknown joint distribution p(x, y|z, θ) = p(x|z, θ)p(y|x, z, θ) over

features x and labels y given the task z. The joint distributions of different tasks may

differ arbitrarily but usually some tasks have similar distributions. An unlabeled test

sample T = 〈(x1, z1), . . . , (xm, zm)〉 with examples from different tasks is available. For

each test example, attributes xi and the originating task zi are known. The test data

for task z are governed by p(x|z, θ).

70 5 Multi-Task Learning under Covariate Shift

A labeled training set L = 〈(xm+1, ym+1, zm+1), . . . , (xm+n, ym+n, zm+n)〉 collects

examples from several tasks. In addition to xi and zi, the label yi is known for each

example. The training data for task z is drawn from a joint distribution p(x, y|z, λ) =

p(x|z, λ)p(y|x, z, λ) that may differ from the test distribution in terms of the marginal

distribution p(x|z, λ). The training and test marginals may differ arbitrarily, as long

as each x with positive p(x|z, θ) also has a positive p(x|z, λ). This guarantees that

the training distribution covers the entire support of the test distribution for each

task. The conditional distributions of test and training data are identical for a given

task z, p(y|x, z, θ) = p(y|x, z, λ) = p(y|x, z), but conditionals can differ arbitrarily

between tasks. The entire training set over all tasks is governed by the mixed density

p(z|λ)p(x, y|z, λ). The prior p(z|λ) specifies the task proportions. There may be tasks

with only a few or no labeled data.

The goal is to learn a hypothesis fz : x 7→ y for each task z. This hypothesis fz(x)

should correctly predict the true label y of unseen examples drawn from p(x|z) for all

z. That is, it should minimize the expected loss

E(x,y)∼p(x,y|z,θ)[ℓ(fz(x), y)]

with respect to the unknown distribution p(x, y|z, θ) for each individual z.

One reference strategy is to learn individual models for each target task z by mini-

mizing an appropriate loss function on the portion of Lz = {(xi, yi, zi) ∈ L : zi = z}.
This procedure minimizes the loss with respect to p(x, y|z, λ); the minimum of this

optimization problem will not generally coincide with the minimal loss on p(x, y|z, θ)

and if Lz is small or empty learning of the correct function is impossible. The other

extreme is a one-size-fits-all model f∗(x) trained on the entire training sample L.

In order to describe the following model accurately, we use the same selector variable

s as in Section 3.3.1 which distinguishes training (s=1) from test distribution (s=−1).

Symbol p(x, y|z, s = 1) is a shorthand for p(x, y|z, s = 1, λ) = p(x, y|z, λ) (cf. Section

3.3.3); likewise, p(x, y|z, s=−1) = p(x, y|z, θ).

As far as we know we are the first to define this problem setting and to derive

and study a solution. A related problem setting is semi-supervised multi-task learning

(Liu et al., 2008).

5.2 Distribution Matching 71

5.2 Multi-Task Learning under Covariate Shift by

Distribution Matching

In this section we derive a distribution matching method that is based on rescaling

weights which match the pool of all examples to the test distribution of the target

task. The rescaling weights are defined in Section 5.2.1. Section 5.2.2 provides a

reformulation of the weights in terms of two discriminative expressions that can be

estimated with logistic regression models (Section 5.2.3). The final target model with

a weighted empirical loss over all training examples is described in Section 5.2.4.

5.2.1 Definition of Rescaling Weights

In learning a classifier ft(x) for target task t, we seek to minimize the loss function with

respect to p(x, y|t, θ) = p(x, y|t, s=−1). Both, t and z are values of the random variable

task; value t identifies the current target task. Simply pooling the available data for all

tasks would create a sample governed by
∑

z p(z|s = 1)p(x, y|z, s = 1). Our approach

is to create a task-specific rescaling weight rt(x, y) for each element of the pool of

examples. The rescaling weights match the pool distribution to the target distribution

p(x, y|t, s = −1). The rescaled pool is governed by the correct target distribution,

but is larger than the labeled sample of the target task. The following derivation of

the rescaling weights is similar to Section 4.4.1 but the resulting weights are different

because of the covariate shift in addition to the joint input-output shift.

The expected weighted loss with respect to the mixture distribution that governs the

pool equals the loss with respect to the target distribution p(x, y|t, s=−1). Equation 5.1

defines the condition that the rescaling weights have to satisfy.

E(x,y)∼p(x,y|t,s=−1)[ℓ(f(x, t), y)] (5.1)

= E(x,y)∼
∑

z p(z|s=1)p(x,y|z,s=1) [rt(x, y)ℓ(f(x, t), y)]

In the following, we will show that

rt(x, y) =
p(x, y|t, s=1)

∑

z p(z|s=1)p(x, y|z, s=1)

p(x|t, s=−1)

p(x|t, s=1)
(5.2)

satisfies Equation 5.1. Equation 5.3 expands the expectation and introduces two frac-

tions that equal one. We can factorize p(x, y|t, s = −1) and expand the sum over z

in the numerator to run over the entire expression because the integral over (x, y) is

independent of z (Equation 5.4). Equation 5.5 rearranges some terms and Equation 5.6

72 5 Multi-Task Learning under Covariate Shift

is the expected loss over the distribution of all tasks weighted by rt(x, y).

E(x,y)∼p(x,y|t,s=−1)[ℓ(f(x, t), y)]

=

∫ ∑

z p(z|s=1)p(x, y|z, s=1)
∑

z′ p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=1)

p(x|t, s=1)
p(x, y|t, s=−1)ℓ(f(x, t), y)dxdy (5.3)

=

∫
∑

z

(
p(z|s=1)p(x, y|z, s=1)

∑

z′p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=1)

p(x|t, s=1)
p(x|t, s=−1)p(y|x, t) (5.4)

ℓ(f(x, t), y)

)

dxdy

=

∫
∑

z

(

p(z|s=1)p(x, y|z, s=1)
p(x|t, s=1)p(y|x, t)

∑

z′ p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=−1)

p(x|t, s=1)
(5.5)

ℓ(f(x, t), y)

)

dxdy

= E(x,y)∼
∑

z p(z|s=1)p(x,y|z,s=1)

[
p(x, y|t, s=1)

∑

z′ p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=−1)

p(x|t, s=1)
ℓ(f(x, t), y)

]

(5.6)

Equation 5.6 signifies that we can train a hypothesis for task t by minimizing the

expected loss over the distribution of all tasks weighted by rt(x, y). This amounts to

minimizing the expected loss with respect to the target distribution p(x, y|t, s =−1).

The rescaling weights of Equation 5.2 have the following intuitive interpretation. The

first fraction accounts for the difference in the joint distributions across tasks and cor-

responds to the rescaling weights for multi-task learning introduced in Chapter 4. The

second fraction accounts for the covariate shift within the target task and corresponds

to the weights described in Chapter 3.

In order to apply Equation 5.6 we need to estimate the product of two density ratios

rt(x, y) = p(x,y|t,s=1)
∑

z p(z|s=1)p(x,y|z,s=1)
p(x|t,s=−1)
p(x|t,s=1) .

5.2.2 Discriminative Formulation of Weights

In this section, we derive a discriminative model that directly estimates the two fac-

tors r1
t (x, y) = p(x,y|t,s=1)

∑

z p(z|s=1)p(x,y|z,s=1) and r2
t (x) = p(x|t,s=−1)

p(x|t,s=1) of the rescaling weights

rt(x, y) = r1
t (x, y)r2

t (x) without estimating the individual densities. The term r1
t (x, y)

captures the input-output shift and r2
t (x) the covariate shift between training and test

distributions. Accordingly, the following derivation for r1
t (x, y) resembles Section 4.4.2

and the one for r2
t (x) is similar to Section 3.3.3.

We reformulate the first density ratio r1
t (x, y) = p(x,y|t,s=1)

∑

z p(z|s=1)p(x,y|z,s=1) in terms of a

conditional model p(t|x, y, s=1). This conditional has the following intuitive meaning:

Given that an instance (x, y) has been drawn at random from the pool distribution

5.2 Distribution Matching 73

∑

z p(z|s=1)p(x, y|z, s=1) over all tasks (including target task t); the probability that

(x, y) originates from p(x, y|t, s=1) is p(t|x, y, s=1). The following equations assume

that the prior on the size of the target sample is greater than zero, p(t|s = 1) > 0.

In Equation 5.7 Bayes’ rule is applied to the numerator and z is summed out in the

denominator. Equation 5.8 follows by dropping the normalization factor p(t|s=1) and

by canceling p(x, y|s=1).

r1
t (x, y) =

p(x, y|t, s=1)
∑

z p(z|s=1)p(x, y|z, s=1)
=

p(t|x, y, s=1)p(x, y|s=1)

p(t|s=1)p(x, y|s=1)
(5.7)

∝ p(t|x, y, s=1) (5.8)

The significance of Equation 5.8 is that it shows how the first factor of the rescaling

weights r1
t (x, y) can be determined without knowledge of any of the task densities

p(x, y|z, s=1). The right hand side of Equation 5.8 can be evaluated based on a model

p(t|x, y, s = 1) that discriminates labeled instances of the target task against labeled

instances of the pool of examples for all non-target tasks.

Similar to the first density ratio, the second density ratio r2
t (x) = p(x|t,s=−1)

p(x|t,s=1) can be

expressed using a conditional model p(s=1|x, t). In Equation 5.9 Bayes’ rule is applied

twice. The two terms of p(x|t) cancel each other out, p(s = 1|t)/p(s =−1|t) is just a

normalization factor, and since p(s=−1|x, t) = 1− p(s=1|x, t), Equation 5.10 follows.

r2
t (x) =

p(x|t, s=−1)

p(x|t, s=1)
=

p(s=−1|x, t)p(x|t)
p(s=−1|t)

p(s=1|t)
p(s=1|x, t)p(x|t) (5.9)

∝ 1

p(s=1|x, t)
− 1 (5.10)

The significance of the above derivations is that instead of the four potentially high-

dimensional densities in rt(x, y), only two conditional densities with binary variables

(Equations 5.8 and 5.10) need to be estimated. One can apply any probabilistic classifier

to this estimation.

5.2.3 Logistic Models for Weights

For the estimation of r1
t (x, y) we model p(t|x, y, s = 1) of Equation 5.8 with a logistic

regression model

p(t|x, y, s=1,ut) =
1

1 + exp(−uT
t Φ(x, y))

over model parameters ut using a problem-specific feature mapping Φ(x, y). We define

this mapping for binary labels as in Section 4.4.3, Φ(x, y) =
[

δ(y,1)Φ(x)
δ(y,−1)Φ(x)

]

. In the

absence of prior knowledge about the similarity of classes, input features x of examples

74 5 Multi-Task Learning under Covariate Shift

with different class labels y are mapped to disjoint subsets of the feature vector. With

this feature mapping the models for positive and negative examples do not interact and

can be trained independently. Any suitable mapping Φ(x) can be applied. In Section

4.4.3, p(t|x, y, s=1) is modeled for all tasks jointly in single optimization problem with

a multinomial logistic model. Empirically, we observe that a separate binary logistic

regression model (as described above) for each task yields more accurate results with

the drawback of an increased overall training time.

Optimization Problem 5.1 For task t: over parameters ut, maximize

∑

(x,y)∈Lt

log(p(t|x, y, s=1,ut)) +
∑

(x,y)∈L\Lt

log(1− p(t|x, y, s=1,ut))−
uT

t ut

2σu

.

The solution of Optimization Problem 5.1 is a MAP estimate of the logistic regression

using a Gaussian prior on ut. The estimated vector ut leads to the first part of the

weighting factor r̂1
t (x, y) ∝ p(t|x, y, s = 1,ut) according to Equation 5.8. r̂1

t (x, y) is

normalized so that the weighted empirical distribution over the pool L sums to one,

1
|L|

∑

(x,y)∈L r̂1
t (x, y) = 1.

According to Equation 5.10 density ratio r2
t (x) = p(x|t,s=−1)

p(x|t,s=1) ∝
1

p(s=1|x,t) − 1 can be

inferred from p(s = 1|x, t) which is the likelihood that a given x for task t originates

from the training distribution, as opposed to from the test distribution. A model of

p(s = 1|x, t) can be obtained by discriminating a sample governed by p(x|t, s = 1)

against a sample governed by p(x|t, s=−1) using a probabilistic classifier. Unlabeled

test data Tt is governed by p(x|t, s=−1). The labeled pool L over all training examples

weighted by r1
t (x, y) can serve as a sample governed by p(x|t, s = 1); the labels y can

be ignored for this step. Empirically, we find that using the weighted pool L instead

of just Lt (as used in Section 3.3) achieves better results because the former sample is

larger. We model p(s=1|x,vt) of Equation 5.10 with a regularized logistic regression

on target variable s with parameters vt (Optimization Problem 5.2). Labeled examples

L are weighted by the estimated first factor r̂1
t (x, y) using the outcome of Optimization

Problem 5.1.

Optimization Problem 5.2 For task t: over parameters vt, maximize

∑

(x,y)∈L

r̂1
t (x, y) log(p(s=1|x,vt)) +

∑

x∈Tt

log(p(s=−1|x,vt))−
vT

t vt

2σv

.

With the result of Optimization Problem 5.2 the estimate for the second fac-

tor is r̂2
t (x) ∝ 1

p(s=1|x,vt)
− 1, according to Equation 5.10. r̂2

t (x) is normal-

5.3 Case Study: Targeted Advertising 75

ized so that the final weighted empirical distribution over the pool sums to one,

1
|L|

∑

(x,y)∈L r̂1
t (x, y)r̂2

t (x) = 1.

5.2.4 Weighted Empirical Loss and Target Model

The learning procedure first determines rescaling weights r̂t(x, y) = r̂1
t (x, y)r̂2

t (x) by

solving Optimization Problems 5.1 and 5.2. These weights can now be used to reweight

the labeled pool over all tasks and train the target model for task t. Using the weights

we can evaluate the expected loss over the weighted training data as displayed in

Equation 5.11. It is the regularized empirical counterpart of Equation 5.6.

E(x,y)∼L

[
r̂1
t (x, y)r̂2

t (x)ℓ(f(x, t), y)
]
+

wT
t wt

2σ2
w

(5.11)

Optimization Problem 5.3 minimizes Equation 5.11, the weighted regularized loss over

the training data using a standard Gaussian log-prior with variance σ2
w on the pa-

rameters wt. Each example is weighted by the two discriminatively estimated density

fractions from Equations 5.8 and 5.10 using the solution of Optimization Problems 5.1

and 5.2.

Optimization Problem 5.3 For task t: over parameters wt, minimize

1

|L|
∑

(x,y)∈L

r̂1
t (x, y)r̂2

t (x)ℓ(f(x,wt), y) +
wT

t wt

2σ2
w

.

In order to train target models for all tasks, instances of Optimization Problems 5.1 to

5.3 are solved for each task.

5.3 Case Study: Targeted Advertising

In this section we study targeted advertising where the goal is to predict sociode-

mographic features (such as gender, age, or marital status) of web users, based on

their surfing history. Many types of products are specifically targeted at clearly de-

fined market segments, and marketing organizations seek to disseminate their message

under minimal costs per delivery to a targeted individual. When sociodemographic at-

tributes can be identified, delivering advertisements to users outside the target segment

can be avoided. For some campaigns, clicks and resulting online purchases constitute

an ultimate success criterion. However, for many campaigns—including campaigns for

products that are not typically purchased on the web—the sole goal is to deliver the

advertisement to customers in the target segment.

76 5 Multi-Task Learning under Covariate Shift

The targeted advertising problem instantiates the abstract problem of multi-task

learning under covariate shift as follows. The feature vector x encodes the web surfing

behavior of a user of web portal z (task). For a small number of users the sociodemo-

graphic target label y (e.g., gender of user) is collected through web surveys. For new

portals the number of such labeled training instances is initially small. The sociode-

mographic labels for all users of all portals are to be predicted. The joint distribution

p(x, y|z, θ) can be different between portals since they attract specific populations of

users. The training distribution differs from the test distribution because the response

to the web surveys is not uniform with respect to the test distribution. Since the com-

pletion of surveys cannot be enforced, it is intrinsically impossible to obtain labeled

samples that are governed by the test distribution. Therefore, a possible difference

between the conditionals p(y|x, z, θ) and p(y|x, z, λ) cannot be reflected in the model.

In the following sections we study the benefit of distribution matching and other

reference methods on targeted advertising. After describing the data sets in Section

5.3.1, we review the experimental setup in Section 5.3.2, and finally, we discuss the

results in Section 5.3.3.

5.3.1 Data Sets

We include four web portals (corresponding to tasks) in our study and manually assign

topic labels, out of a fixed set of 373 topics, to all web pages on all portals. For each

user the topics of the surfed pages are tracked and the topic counts are stored in cookies

of the user’s web browser. The average number of surfed topics per user over all portals

is 17. The feature vector x of a specific surfer is the normalized 373 dimensional vector

of topic counts.

A small proportion of users is asked to fill out a web questionnaire that collects so-

ciodemographic user profiles. About 25% of the questionnaires get completely filled

out (accepted) and in 75% of the cases the user rejects to fill out the questionnaire.

The accepted questionnaires constitute the training data L. The completion of the

questionnaire cannot be enforced and it is therefore not possible to obtain labeled data

that is governed by the test distribution of all users that surf the target portal. In order

to evaluate the model, we approximate the distribution of users who reject the ques-

tionnaire as follows. We take users who have answered the very first survey question

(gender) but have then discontinued the survey as an approximation of the reject set.

We add the correct proportion (25%) of users who have taken the survey, and thereby

construct a sample that is governed by an approximation of the test distribution. Con-

5.3 Case Study: Targeted Advertising 77

Table 5.1: Portal statistics: number of accepted, partially rejected, and test examples (mix of
all partial reject (=75%) and 25% accept); ratio of male users in training (accept) and test set.

portal # accept # partial reject # test % male training % male test

family 8073 2035 2713 53.8% 46.6%

TV channel 8848 1192 1589 50.5% 50.1%

news 1 3051 149 199 79.4% 76.7%

news 2 2247 143 191 73.0% 76.0%

sequently, in our experiments we use the binary target label y ∈ {male, female}. Table

5.1 gives an overview of the data set.

5.3.2 Experimental Setup

We compare distribution matching on labeled and unlabeled data (Optimization Prob-

lems 5.1 to 5.3) and distribution matching only on labeled data by setting r̂2
t (x) = 1 in

Optimization Problem 5.3 (corresponds to Optimization Problem 4.3) to the following

reference models. The first baseline is a one-size-fits-all model that directly trains a

logistic regression on L (setting r̂1
t (x, y)r̂2

t (x) = 1 in Optimization Problem 5.3). The

second baseline is a logistic regression trained only on Lt, the training examples of

the target task. Training only on the reweighted target task data and correcting for

marginal shift with respect to the unlabeled test data is the third baseline (Section

3.3).

The last reference method is the hierarchical Bayesian kernel of Evgeniou and Pontil

(2004) described in Section 4.2.1. We evaluate the methods using all training examples

from non-target tasks and different numbers of training examples from the target task.

From all available accept examples of the target task we randomly select a certain

number (0-1600) of training examples. From the remaining accept examples of the

target task we randomly select an appropriate number and add them to all partial

reject examples of the target task so that the evaluation set has the right proportions

as described above. We repeat this process ten times and report the average accuracies

of all methods.

We use a logistic loss as the target loss of distribution matching in Optimization

Problem 5.3 and all reference methods. We compare kernelized variants of Optimization

Problems 5.1 to 5.3 with RBF, polynomial, and linear kernels and find the linear kernel

to achieve the best performance on our data set. All reported results are based on

78 5 Multi-Task Learning under Covariate Shift

models with linear kernels. For the optimization of the logistic regression models we

use trust region Newton descent (Lin et al., 2008).

We tune parameter σu using ten-fold nested cross-validation on the training examples

of the target task. With the examples of the training folds and with all data of non-

target tasks we solve Optimization Problem 5.1 in the outer cross-validation loop.

In the inner cross-validation loop we temporarily tune σw by solving Optimization

Problem 5.3 (fixing r̂2
t (x) = 1) and select a σu so that the accuracy on the tuning

folds is maximized. Parameter σv is tuned by ten-fold likelihood cross-validation over

labeled and unlabeled data as follows. The labels of the labeled data are ignored for

this procedure. Test data Tt of the target task as well as the weighted pool L (weighted

by r̂1
t (x, y)) are split into ten folds. With the nine training folds of the test data and the

nine training folds of the weighted pool L, Optimization Problem 5.2 is solved (r̂1
t (x, y)

is fixed based on the model with the previously tuned σu parameter). Parameter σv is

chosen to maximize the log-likelihood

∑

(x,y)∈Ltune

r̂1
t (x, y) log(p(s=1|x,vt)) +

∑

x∈T tune
t

log(p(s=−1|x,vt))

on the tuning folds of test data and weighted pool (denoted by Ltune and T tune
t) over

all ten cross-validation loops.

Shimodaira (2000) shows that weighting the training data with the true training-

to-test density ratio is not necessarily the best way of learning under covariate shift

because the expected loss of the target model can be large due to a large variance

of the estimator of the target model (cf. Section 3.2). Intuitively, if the weights for

many training examples are very small and only a few are large the effective sample

size of the weighted training sample is small and training on a small sample decreases

the expected performance of the model on unseen data. We follow Shimodaira (2000)

and smooth the estimated weights by r̂2
t (x)η before including them into Optimization

Problem 5.3. Without looking at the test data of the target task we tune η on the non-

target tasks so that the accuracy of the distribution matching method is maximized.

This procedure usually results in η values around 0.3. The last parameter σw is tuned

by regular ten-fold cross-validation on the weighted pool L using the weights resulting

from the previously tuned parameters σu, σv, and η. The following list summarizes the

tuning procedure:

1. Tuning of σu, outer loop: Accuracy cross-validation on Lt, in each loop solve

Optimization Problem 5.1.

5.4 Conclusion 79

• Inner loop: Temporarily tuning of σw by accuracy cross-validation on

rescaled L¬t merged with the rescaled current training folds of Lt, in each

loop solve Optimization Problem 5.3 with fixed r̂2
t (x) = 1.

2. Tuning of σv: Likelihood cross-validation on Tt ∪ L, L is rescaled by r̂1
t (x, y), in

each loop solve Optimization Problem 5.2.

3. Tuning of σw: Accuracy cross-validation on L rescaled by r̂1
t (x, y)r̂2

t (x), in each

loop solve Optimization Problem 5.3.

5.3.3 Results

Figure 5.1 displays the accuracies over different numbers of labeled data for the four

different target portals. The error bars are the standard errors of the differences to the

distribution matching method on labeled data (solid line).

For the “family” and “TV channel” portals the distribution matching method on

labeled and unlabeled data outperforms all other methods in almost all cases. The

distribution matching method on labeled data outperforms the baselines trained only

on the data of the target task for all portals and all data set sizes and it is at least as

good as the one-size-fits-all model in almost all cases. The hierarchical Bayes method

yields low accuracies for smaller number of training examples but gets comparable to

the distribution matching method on labeled data with increasing training set sizes of

the target portal. The simple covariate shift model with training only on labeled and

unlabeled data of the target task does not improve on the model that only trains on the

labeled data of the target task. This indicates that the marginal shift between training

and test distributions is rather small, or could indicate that the approximation of the

reject distribution which we use in our experimentation is not sufficiently close. Either

reason also explains why accounting for the marginal shift in the distribution matching

method does not always improve over distribution matching using only labeled data.

5.4 Conclusion

We derived a multi-task learning method that is based on the insight that the expected

loss with respect to the unbiased test distribution of the target task is equivalent to

the expected loss over the biased training examples of all tasks weighted by a task

specific rescaling weight. This led to an algorithm that discriminatively estimates

these rescaling weights by training two simple conditional models. After weighting the

pooled examples over all tasks the target model for a specific task can be trained.

80 5 Multi-Task Learning under Covariate Shift

distr. matching on lab. and unlab. data
distribution matching on labeled data
hierarchical Bayes

one-size-�ts-all on pool of labeled data
training only on lab. data of target task
training on lab. and unlab. data of targ. task

 0.56

 0.6

 0.64

 0.68

0 25 50 100 200 400 800 1600

a
c
c
u

ra
c
y

training examples for target portal

family

 0.64

 0.68

 0.72

0 25 50 100 200 400 800 1600
a

c
c
u

ra
c
y

training examples for target portal

TV channel

 0.72

 0.76

 0.8

0 25 50 100 200 400 800 1600

a
c
c
u

ra
c
y

training examples for target portal

news 1

 0.8

 0.84

 0.88

0 25 50 100 200 400 800 1600

a
c
c
u

ra
c
y

training examples for target portal

news 2

Figure 5.1: Accuracy over different number of training examples for target portal. Error bars
indicate the standard error of the differences to distribution matching on labeled data.

In our empirical study on targeted advertising, we found that distribution matching

using labeled data outperforms all reference methods in almost all cases; the differences

are particularly large for small sample sizes. Distribution matching with labeled and

unlabeled data outperforms the reference methods and distribution matching with only

labeled data in two out of four portals. Even with no labeled data of the target task

the performance of the distribution matching method is comparable to training on 1600

examples of the target task for all portals.

6 Conclusions

In this thesis we systematically studied learning under differing training and test distri-

butions. We considered different assumptions on the relationship between training and

test distributions. This led to three different problem settings: learning under covariate

shift, multi-task learning, and multi-task learning under covariate shift.

For learning under covariate shift we derived a discriminative expression for rescaling

weights that match the rescaled training distribution to the test distribution. Density

ratios can be directly estimated with this discriminative model and frees us from the

burden of estimating the potentially high dimensional distributions of the single den-

sities separately, which is prevalent in the existing literature. We combined the model

for the rescaling weights and the target model and obtained one single integrated op-

timization problem for learning under covariate shift. An analysis of the convexity of

the integrated problem showed that it is only convex for an exponential loss function.

A two-stage approximation to the integrated model makes the problem convex for all

convex target loss functions and led to a procedure for extending almost any predictive

model to learning under covariate shift. We provided a new discriminative view of

the well known kernel mean matching procedure and pointed out the relationship to

our discriminative model. These findings result in an out-of-sample extension of kernel

mean matching that can be used for parameter tuning.

Empirically, the discriminative model outperforms the iid baseline and a kernel den-

sity estimated model on spam filtering, text classification, and landmine detection.

The two-stage approximation yields comparable results to the integrated model. To

our knowledge this is the first empirical study on learning under covariate shift that

is based on real data with a natural shift in the distributions. All existing studies

artificially introduce covariate shift into standard data sets.

In the problem of multi-task learning the difference between the task distributions

is not restricted to the covariates but is reflected in the joint distribution over inputs

and outputs. We derived a new model for multi-task learning that does not rely on any

assumption on the relationship between the task distributions as all existing models

for multi-task learning. It is based on rescaling weights that match the distribution

82 6 Conclusions

of the training data over all tasks to the distribution of the test data from a target

task. Similar to the covariate shift model, the rescaling weights have a discriminative

reformulation that can be estimated with logistic regression. A target model is trained

on the rescaled or resampled training data over all tasks.

We derived a nested hierarchical Bayesian model for Gaussian processes that can

be applied in settings with grouped tasks. We showed that two well known feature

mappings for multi-task learning and taxonomy classification directly arise from hier-

archical Bayesian models. These findings may lead to more sophisticated models for

taxonomy classification. In a case study on HIV therapy screening, multi-task learning

by distribution matching outperforms two iid baselines and three hierarchical Bayesian

models in most of the cases.

We introduced the new problem setting of multi-task learning under covariate shift.

This problem naturally arises in a multi-task setting when the collection of labeled

training data is exposed to a selection process that leads to a biased training distri-

bution. We devised a solution based on rescaling weights that match the mixture

distribution over all tasks to the distribution of the test data for a specific target task.

The rescaling weights can be factorized into a term that accounts for the covariate

shift and a term that accounts for the divergence of distributions across tasks. These

two terms can be reformulated in terms of discriminative models and estimated with

two logistic regressions. Analogously to the other distribution matching methods, the

target model is trained over reweighted training data from all tasks. A case study on

targeted advertising shows that the distribution matching methods improve over the

reference methods in almost all cases.

We are convinced that our findings are inspiring to future work in the field of learning

under differing training and test distributions. We can think of several extensions and

new applications of our work. An intrinsic effect of active learning is that the training

distribution differs from the test distribution. In active learning the labeling process

is guided towards informative examples. By this selection process covariate shift is

introduced. Despite the broad interest of the machine learning community in active

learning models, the covariate shift in active learning has been mostly neglected. The

appealing property of active learning is that we can be certain that there is a pure

covariate shift, not a joint input-output shift because the active learning procedure

does not have access to the labels at the time of a labeling request. A related prob-

lem setting that has not been studied is active learning in a multi-task setting. The

active learning process could query labels that help the model to better estimate the

difference of distributions across tasks and thereby improve the transfer of knowledge

83

between tasks. In some cases the active labeling for different tasks may involve different

task-specific costs and a cost-sensitive active learning framework could minimize the

expected prediction performance under a limited labeling budget.

Our multi-task model based on distribution matching does not need any assumption

on the relationship between the task distributions. This is in contrast to the existing

multi-task models that make such assumption. For example, hierarchical Bayesian

models assume a common prior distribution over all tasks. There may be settings when

these assumptions are partially justified and hybrids between our distribution matching

model and, e.g., a hierarchical Bayesian model can lead to better performance then the

single models on their own.

A further related challenge is the construction of models for transfer learning that

can exploit application specific prior knowledge on the type of transfer or type of dis-

tribution shift in the training data. For example, a face recognition model is trained

from indoor pictures and applied to outdoor pictures. In this case one has prior knowl-

edge that the main difference between training and test distributions are the lighting

conditions and one could directly encode this knowledge in a transfer model.

Our models on learning under covariate shift rely on unlabeled data drawn from the

test distribution. Semi-supervised learning is a related problem setting where training

and test distributions are assumed to be identical and unlabeled data is available at the

training time of the model. Typically, semi-supervised algorithms make some cluster

assumption on the shape of the data distributions. One could combine covariate shift

and semi-supervised models and construct new models that account for covariate shift

in the training data and make a cluster assumption on the data distributions at the

same time.

84 6 Conclusions

Appendix A

Newton Updates for Integrated

Covariate Shift Model

In this Appendix, we derive Newton gradient descent updates for Optimization Prob-

lem 1 and thereby prove Theorem 3.1. We abbreviate

ℓv,i =ℓv(siv
Txi); ℓ′v,isixij =

∂ℓv(siv
Txi)

∂vj
; ℓ′′v,ixijxik =

∂2ℓv(siv
Txi)

∂vjvk
; (A.1)

ℓw,i =ℓw(yiw
Txi); ℓ′w,iyixij =

∂ℓw(yiw
Txi)

∂wj
; ℓ′′w,ixijxik =

∂2ℓw(yiw
Txi)

∂wjwk
; (A.2)

ωi =
p(s = 1)

p(s = −1)
exp(−vTxi) (A.3)

and denote the objective function of Optimization Problem 1 by

F (v,w,y,XL,XT) =
m∑

i=1

ωiℓw,i +
m+n∑

i=1

ℓv,i +
1

2σ2
w

wTw +
1

2σ2
v

vTv. (A.4)

We compute the gradient with respect to v and w.

∂F (v,w,y,XL,XT)

∂vj
= −

m∑

i=1

ωiℓw,ixij +
m+n∑

i=1

ℓ′v,isixij +
1

σ2
v

vj (A.5)

∂F (v,w,y,XL,XT)

∂wj
=

m∑

i=1

ωiℓ
′
w,iyixij +

1

σ2
w

wj (A.6)

86 Appendix A Newton Updates for Integrated Covariate Shift Model

The Hessian is the matrix of second derivatives.

∂2F (v,w,y,XL,XT)

∂vj∂vk
=

m∑

i=1

ωiℓw,ixijxik +
m+n∑

i=1

ℓ′′v,ixijxik +
1

σ2
v

δjk (A.7)

∂2F (v,w,y,XL,XT)

∂vj∂wk
= −

m∑

i=1

ωiℓ
′
w,iyixijxik (A.8)

∂2F (v,w,y,XL,XT)

∂wj∂wk
=

m∑

i=1

ωiℓ
′′
w,ixijxik +

1

σ2
w

δjk (A.9)

We can rewrite gradient as Xg+S [v,w]T and Hessian as XΛXT+S using the following

definitions, g =
[
g(1),g(2),g(3)

]T
, S =

[

Sv 0

0 Sw

]

with

g
(1)
i = −ωiℓw,i + ℓ′v,i for i = 1, . . . , m, (A.10)

g
(2)
i = −ℓ′v,m+i for i = 1, . . . , n, (A.11)

g
(3)
i = ωiℓ

′
w,iyi for i = 1, . . . , m, (A.12)

Sv
i,i = σ−2

v for i = 1, . . . ,dim(XT), (A.13)

Sw
i,i = σ−2

w for i = 1, . . . ,dim(XL), (A.14)

Λ =










diag
i=1,...,m

(

ωiℓw,i + ℓ′′v,i

)

0 − diag
i=1,...,m

(ωiℓ
′
w,iyi)

0 diag
i=1,...,n

(

ℓ′′v,m+i

)

0

− diag
i=1,...,m

(ωiℓ
′
w,iyi) 0 diag

i=1,...,m
(ωiℓ

′′
w,i)










. (A.15)

The update step for the Newton gradient descent minimization of Optimization Prob-

lem 1 is [v′,w′]T ← [v,w]T + [∆v, ∆w]T with

(XΛXT + S)




∆v

∆w



 = −Xg − S




v

w



 .

Appendix B

Optimality Conditions of Kernel Mean

Matching

We analyze the Karush-Kuhn-Tucker conditions of kernel mean matching (Optimization

Problem 3.2, Huang et al. (2007)):

min
αL

1

2
αT

LK(LL)αL −
m

n
αT

LK(LT)1 (B.1)

subject to αi ∈
[
0, σ2

v

]
and m(1− ǫ) ≤ αT

L1 ≤ m(1 + ǫ).

Kernel mean matching uses the αi, the results of the optimization problem, as rescaling

factors for the target classifier (Optimization Problem 3). In order to find out how we

can interpret αi we analyze the optimality conditions of kernel mean matching; we

divide the objective by m and construct the Lagrangian in Equation B.2.

L =
1

2m
αT

LK(LL)αL −
1

n
αT

LK(LT)1− γ1(α
T

L1−m(1− ǫ)) (B.2)

+ γ2(α
T

L1−m(1 + ǫ))−
m∑

i=1

φiαi +
m∑

i=1

µi(αi − σ2
v)

The Karush-Kuhn-Tucker conditions are:

∂L
∂αi

=
1

m

m∑

j=1

αjk(xi,xj)−
1

n

m+n∑

j=m+1

k(xi,xj)− γ1 + γ2 − φi + µi = 0 (B.3)

γ1 ≥ 0 (B.4)

γ1(α
T

L1−m(1− ǫ)) = 0 (B.5)

γ2 ≥ 0 (B.6)

γ2(α
T

L1−m(1 + ǫ)) = 0 (B.7)

φi ≥ 0 (B.8)

φiαi = 0 (B.9)

88 Appendix B Optimality Conditions of Kernel Mean Matching

µi ≥ 0 (B.10)

µi(αi − σ2
v) = 0 (B.11)

The decision function of kernel mean matching is g(x; α, b) = 1
m

∑m
j=1 αjk(x,xj) −

1
n

∑m+n
j=m+1 k(x,xj) + b. The first term is the SVM part and the second the Rocchio

part of the decision function, b is the offset parameter. Similar to the regular SVM

we can simplify the Karush-Kuhn-Tucker conditions by considering three cases, we set

−γ1 + γ2 = b:

case 1: g(xi; α, b) ≥ 0, φi ≥ 0, µi = 0 ⇒ αi = 0

case 2: g(xi; α, b) ≤ 0, φi = 0, µi ≥ 0 ⇒ αi = σ2
v

case 3: g(xi; α, b) = 0, φi = 0, µi = 0 ⇒ 0 < αi < σ2
v.

(B.12)

Appendix C

EM Updates for Nested Hierarchical

Bayes with Gaussian Processes

In this appendix we prove Theorem 4.1 and derive EM updates for maximizing the

posterior of Equation 4.22. We use the function values fkz as hidden variables and

derive the so called Q-function (Dempster et al., 1977). In case of a MAP estimation

the Q-function is the expectation over the log-joint distribution of model parameters

φ = {gk, µ,K}, data y, and hidden variables fkz given the parameters of the last

iteration φ(j−1) (Equation C.1). The prior is independent of fkz and can be drawn out

of the expectation (Equation C.2)

Q(φ|φ(j−1)) = E[p(gk, µ,K,y, fkz|X, σ2, π, τ, κ)|φ(j−1)] (C.1)

= E[p(y, fkz|gk,K,X, σ2)|φ(j−1)] + p(gk, µ,K|π, τ, κ) (C.2)

The first term of Equation C.2 is expanded in Equation C.3 and further expanded in

Equation C.4. For a simplified presentation we drop the conditioning on φ(j−1) in the

notation of the expectations.

E[p(y, fkz|gk,K,X, σ2)]

= E






∑

k

∑

z∈
group k



log N(fkz|gk,K) +
∑

i∈Lkz

log N(yi|fkzi, σ
2)








 (C.3)

= −1

2

∑

k

∑

z∈
group k

(

E
[

(fkz − gk)
TK−1(fkz − gk)

]

+
1

2σ2
E
[
||ykz − fkz||2

]
)

(C.4)

−|L| log σ − 1

2
|L| log(2π)− 1

2

∑

k

∑

z∈
group k

(|L| log(2π) + log |K|)

90 Appendix C EM Updates for Nested Hierarchical Bayes

The binomial theorem applied to the first expectation of Equation C.4 yields Equa-

tion C.5. Equation C.6 uses the well known relationship between quadratic forms

and trace, and the decomposition property of a covariance matrix, E[fT

kzK
−1fkz] =

E[tr(fkzf
T

kzK
−1)] = tr(E[fkzf

T

kz]K
−1) = tr((Cov[fkz] + E[fkz]E[fkz]

T)K−1) =

tr(Cov[fkz]K
−1) + E[fkz]

TK−1E[fkz]. The last three terms of Equation C.6 are pro-

portional to a log-Gaussian density function (Equation C.7).

E
[

(fkz − gk)
TK−1(fkz − gk)

]

= E
[

fT

kzK
−1fkz − 2fT

kzK
−1gk

]

+ gT

k K−1gk (C.5)

= tr(Cov[fkz]K
−1) + E [fkz]

T K−1E [fkz]− 2E [fkz]
T K−1gk + gT

k K−1gk (C.6)

∝ tr(Cov[fkz]K
−1)− log N(E [fkz] |gk, K) (C.7)

For the evaluation of the Q-function of Equations C.1, C.4, and C.7 the expectation

and covariance matrix of fkz are needed. According to Schwaighofer et al. (2005) they

are equivalent to the standard predictive mean and covariance for Gaussian process

models as displayed in Equations C.8 and C.9. The index kz at K∗,kz and Kkz,kz

restricts the covariance matrices to all elements corresponding to the instances for

group k and task z. Analogously, ykz and gkz are training labels for group k and task

z and the corresponding subvector of the group mean.

E [fkz] = K∗,kz

(
Kkz,kz + σ2I

)−1
(ykz − gkz) + gk (C.8)

Cov[fkz] = K−K∗,kz

(
Kkz,kz + σ2I

)−1
KT

∗,kz (C.9)

The computation of Equations C.8 and C.9 constitute the E-step. In the M-step the

Q-function is maximized with respect to the prior parameters:

(g∗
k, µ

∗,K∗) = argmax
gk,µ,K

Q(φ|φ(j−1)) (C.10)

In order to find the maximizing parameters we compute the partial derivatives of

Q(φ|φ(j−1)) and set them to zero. The partial derivatives with respect to gk are dis-

played in Equations C.11 and C.12.

∂Q(φ|φ(j−1))

∂gk
=

∂

(

∑

z∈group k

log N(E [fkz] |gk,K) + log N(gk|µ,K)

)

∂gk
(C.11)

=
∑

z∈group k

K−1(E [fkz]− gk)−K−1(gk − µ) (C.12)

91

Setting Equation C.12 to zero and solving for gk gives

gk =

∑

z∈group k

E [fkz] + µ

|z ∈ group k|+ 1
. (C.13)

The partial derivatives with respect to µ are shown in Equations C.14 and C.15.

∂Q(φ|φ(j−1))

∂µ
=

∂
(
log N(µ|0, 1

πK) +
∑

k log N(gk|µ,K)
)

∂µ
(C.14)

= −πK−1µ +
∑

k

K−1(gk − µ) (C.15)

Setting Equation C.15 to zero yields

µ =

∑

k gk

|groups|+ π
. (C.16)

The partial derivatives with respect to K−1 are shown in Equations C.17 and C.18.

∂Q(φ|φ(j−1))

∂K−1
=

=

∂

(

∑

k

∑

z∈group k

(
− tr(Cov[fkz]K

−1) + log N(E [fkz] |gk,K)
)

)

∂K−1
(C.17)

+

∂

(

log IW (K|τ, κ−1) + log N(µ|0, 1
πK) +

∑

k

log N(gk|µ,K)

)

∂K−1

=
1

2

∑

k

∑

z∈group k

(

−Cov[fkz] + K − (E[fkz]− gk) (E[fkz]− gk)
T

)

(C.18)

+
τ − 1

2
K− τ

2
κ +

1

2
K +

1

2

∑

k

(

K− (gk − µ) (gk − µ)T
)

Setting Equation C.18 to zero and solving for K results in Equation C.19.

K =




∑

k

∑

z∈group k

(

Cov[fkz] + (E[fkz]− gk) (E[fkz]− gk)
T

)

(C.19)

+τκ +
∑

k

(gk − µ) (gk − µ)T
)

1

τ + |tasks|+ |groups|

Now we can summarize the steps of the EM algorithm.

• In the E-step Equations C.8 and C.9 are computed based on the parameters of

the last iteration φ(j−1).

92 Appendix C EM Updates for Nested Hierarchical Bayes

• In the M-step the Q-function is maximized by computing new parameters with

Equations C.13, C.16, and C.19.

Bibliography

A. Altmann, N. Beerenwinkel, T. Sing, I. Savenkov, M. Doumer, R. Kaiser, S. Rhee,

W. Fessel, W. Shafer, and T. Lengauer. Improved prediction of response to antiretro-

viral combination therapy using the genetic barrier to drug resistance. Antiviral

Therapy, 12:169–178, 2007.

R. Ando and T. Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817–1853,

2005.

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances in

Neural Information Processing Systems, 2007.

B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning.

The Journal of Machine Learning Research, 4:83–99, 2003.

J. Bi, T. Xiong, S. Yu, M. Dundar, and B. Rao. An improved multi-task learning

approach with applications in medical diagnosis. In Proceedings of the European

Conference on Machine Learning, 2008.

S. Bickel, editor. Proceedings of the ECML-PKDD Discovery Challenge Workshop.

2006.

S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on biased samples.

In Advances in Neural Information Processing Systems, 2007.

S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training

and test distributions. In Proceedings of the International Conference on Machine

Learning, 2007.

S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer. Multi-task learning for HIV ther-

apy screening. In Proceedings of the International Conference on Machine Learning,

2008a.

94 Appendix C Bibliography

S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under covariate

shift with a single optimization problem. In J. Quinonero Candela, M. Sugiyama,

A. Schwaighofer, and N. Lawrence, editors, Dataset Shift in Machine Learning. MIT

Press, Cambridge, 2008b.

S. Bickel, C. Sawade, and T. Scheffer. Transfer learning by distribution matching for

targeted advertising. In Advances in Neural Information Processing Systems, 2009,

to appear.

E. Bonilla, F. Agakov, and C. Williams. Kernel multi-task learning using task-specific

features. In Proceedings of the International Conference on Artificial Intelligence and

Statistics, 2007.

E. Bonilla, K. Chai, and C. Williams. Multi-task Gaussian process prediction. In

Advances in Neural Information Processing Systems, 2008.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correc-

tion theory. In Proceedings of the International Conference on Algorithmic Learning

Theory, 2008.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society B, 39, 1977.

M. Dudik, R. Schapire, and S. Phillips. Correcting sample selection bias in maximum

entropy density estimation. In Advances in Neural Information Processing Systems,

2005.

M. Dudik, D. Blei, and R. Schapire. Hierarchical maximum entropy density estimation.

In Proceedings of the International Conference on Machine Learning, 2007.

C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the International

Joint Conference on Artificial Intellligence, 2001.

T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the

International Conference on Knowledge Discovery and Data Mining, 2004.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman &

Hall/CRC, 2004.

I. Good. The Estimation of Probabilities: An Essay on Modern Bayesian Methods.

MIT Press, 1965.

Appendix C Bibliography 95

J. Heckman. Sample selection bias as a specification error. Econometrica, 47:153–161,

1979.

M. Hein. Binary classification under sample selection bias. In J. Quinonero Candela,

M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors, Dataset Shift in Machine

Learning. MIT Press, Cambridge, 2008.

R. Herbrich. Learning kernel classifiers. MIT Press, 2002.

T. Heskes. Empirical Bayes for learning to learn. In Proceedings of the International

Conference on Machine Learning, 2000.

J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf. Correcting sample

selection bias by unlabeled data. In Advances in Neural Information Processing

Systems, 2007.

N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study.

Intelligent Data Analysis, 6:429–449, 2002.

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text

categorization. In Proceedings of the International Conference on Machine Learning,

1997.

V. Johnson, F. Brun-Vezinet, B. Clotet, H. Günthrad, D. Kuritzkes, D. Pillay,

J. Schapiro, A. Telenti, and D. Richman. Update of the drug resistance mutations

in HIV-1: 2007. Top HIV Med., 15:119–125, 2007.

S. Kaski and J. Peltonen. Learning from relevant tasks only. In Proceedings of the

European Conference on Machine Learning, 2007.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic

models for segmenting and labeling sequence data. In Proceedings of the International

Conference on Machine Learning, 2001.

B. Larder, D. Wang, A. Revell, J. Montaner, R. Harrigan, F. De Wolf, J. Lange,

S. Wegner, L. Ruiz, MJ. Pérez-Eĺıas, S. Emery, J. Gatell, A. D’Arminio Monforte,

C. Torti, M. Zazzi, and C. Lane. The development of artificial neural networks

to predict virological response to combination HIV therapy. Antiviral Therapy, 12:

15–24, 2007.

R. Lathrop and M. Pazzani. Combinatorial optimization in rapidly mutating drug-

resistant viruses. Journal of Combinatorial Optimization, 3:301–320, 1999.

96 Appendix C Bibliography

X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source.

Proceedings of the International Conference on Machine Learning, 2005.

C. Lin, R. Weng, and S. Keerthi. Trust region Newton method for large-scale logistic

regression. Journal of Machine Learning Research, 9:627–650, 2008.

Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. In Advances in

Neural Information Processing Systems, 2008.

J. Lunceford and M. Davidian. Stratification and weighting via the propensity score in

estimation of causal treatment effects: a comparative study. Statistics in Medicine,

23(19):2937–2960, 2004.

C. Manski and S. Lerman. The estimation of choice probabilities from choice based

samples. Econometrica, 45(8):1977–1988, 1977.

G. Obozinski, B. Taskar, and M Jordan. Multi-task feature selection. Technical report,

UC Berkeley, 2007.

R. Prentice and R. Pyke. Logistic disease incidence models and case-control studies.

Biometrika, 66(3):403–411, 1979.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT

Press, 2006.

M. Rosen-Zvi, A. Altmann, M. Prosperi, E. Aharoni, H. Neuvirth, A. Sönnerborg,

E. Schülter, D. Struck, Y. Peres, F. Incardona, R. Kaiser, M. Zazzi, and T. Lengauer.

Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Pro-

ceedings of the International Conference on Intelligent Systems for Molecular Biology,

2008.

P. Rosenbaum and D. Rubin. The central role of the propensity score in observational

studies for causal effects. Biometrika, 70(1):41–55, 1983.

D. Roy and L. Kaelbling. Efficient Bayesian task-level transfer learning. In Proceedings

of the Joint Conference on Artificial Intelligence, 2007.

B. Schölkopf and A. Smola. Learning with kernels. MIT Press, 2002.

A. Schwaighofer, V. Tresp, and K. Yu. Learning Gaussian process kernels via hierar-

chical Bayes. In Advances in Neural Information Processing Systems, 2005.

Appendix C Bibliography 97

H. Shimodaira. Improving predictive inference under covariate shift by weighting the

log-likelihood function. Journal of Statistical Planning and Inference, 90:227–244,

2000.

B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall,

London, 1986.

A. Smith and C. Elkan. A Bayesian network framework for reject inference. In Pro-

ceedings of the International Conference on Knowledge Discovery and Data Mining,

2004.

A. Smith and C. Elkan. Making generative classifiers robust to selection bias. In Pro-

ceedings of the International Conference on Knowledge Discovery and Data Mining,

2007.

N. Sokolovska, O. Cappe, and F. Yvon. The asymptotics of semi-supervised learning in

discriminative probabilistic models. In Proceedings of the International Conference

on Machine Learning, 2008.

M. Sugiyama and K.-R. Müller. Input-dependent estimation of generalization error

under covariate shift. Statistics and Decision, 23(4):249–279, 2005.

M. Sugiyama, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct

importance estimation with model selection and its application to covariate shift

adaptation. In Advances in Neural Information Processing Systems, 2008a.

M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe.

Direct importance estimation for covariate shift adaptation. Annals of the Institute

of Statistical Mathematics, 60(4), 2008b.

Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. Journal of

the American Statistical Association, 101(476):1566–1581, 2006.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research, 6:1453–1484, 2005.

J. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama. Direct density ratio

estimation for large-scale covariate shift adaptation. In Proceedings of the SIAM

International Conference on Data Mining, 2008.

UNAIDS/WHO. AIDS Epidemic Update. 2007.

98 Appendix C Bibliography

P. Wu and T.G. Dietterich. Improving SVM accuracy by training on auxiliary data

sources. Proceedings of the International Conference on Machine Learning, 2004.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification

with Dirichlet process priors. Journal of Machine Learning Research, 8:35–63, 2007.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple

tasks. Proceedings of the International Conference on Machine Learning, 2005.

S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In Proceedings

of the International Conference on Machine Learning, 2007.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Pro-

ceedings of the International Conference on Machine Learning, 2004.

J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent in-

dependent component analysis. Advances in Neural Information Processing Systems,

17, 2005.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In

Advances in Neural Information Processing Systems, 2002.

	Front page
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Differing Distributions: Motivating Examples
	1.2 Contributions
	1.3 Own Previously Published Work
	1.4 Outline

	2 Learning Predictive Models from Data
	2.1 Predictive Modeling by Loss Minimization
	2.2 Empirical Regularized Loss and IID Assumption
	2.3 Violation of IID Assumption: Covariate Shift and Multi-Task Setting

	3 Learning under Covariate Shift
	3.1 Covariate Shift vs. Sample Selection Bias and Propensity Scoring
	3.1.1 Sample Selection Bias
	3.1.2 Propensity Scoring

	3.2 Compensation of Covariate Shift by Loss Rescaling
	3.3 Discriminative Learning under Covariate Shift
	3.3.1 Integrated Model
	3.3.2 Maximum A Posteriori Parameter Inference
	3.3.3 Label Likelihood and Discriminative Weighting Factors
	3.3.4 Optimization Problem for Integrated Model
	3.3.5 Primal and Kernelized Learning Algorithm

	3.4 Convexity Analysis and Solving the Optimization Problems
	3.5 Two-Stage Approximation to Integrated Model
	3.6 Kernel Mean Matching and KLIEP
	3.6.1 Kernel Mean Matching
	3.6.2 KLIEP

	3.7 Parameter Tuning
	3.8 Empirical Results
	3.8.1 Reference Methods and Experimental Setup
	3.8.2 Spam Filtering
	3.8.3 Text Classification
	3.8.4 Landmine Detection

	3.9 Conclusion

	4 Multi-Task Learning
	4.1 Problem Setting
	4.2 Hierarchical Bayesian Learning
	4.2.1 Hierarchical Bayesian Kernel Learning
	4.2.2 Hierarchical Bayes for Taxonomy Classification
	4.2.3 Hierarchical Bayes with Gaussian Processes
	4.2.4 Nested Hierarchical Bayes with Gaussian Processes

	4.3 Overview on other Multi-Task Models
	4.4 Multi-Task Learning by Distribution Matching
	4.4.1 Definition of Rescaling Weights
	4.4.2 Discriminative Formulation of Weights
	4.4.3 Logistic Model for Weights
	4.4.4 Weighted Empirical Loss and Target Model

	4.5 Case Study: HIV Therapy Screening
	4.5.1 Data Sets and Prior Knowledge on Task Similarity
	4.5.2 Reference Methods
	4.5.3 Experimental Setup
	4.5.4 Results

	4.6 Conclusion

	5 Multi-Task Learning under Covariate Shift
	5.1 Problem Setting
	5.2 Multi-Task Learning under Covariate Shift by Distribution Matching
	5.2.1 Definition of Rescaling Weights
	5.2.2 Discriminative Formulation of Weights
	5.2.3 Logistic Models for Weights
	5.2.4 Weighted Empirical Loss and Target Model

	5.3 Case Study: Targeted Advertising
	5.3.1 Data Sets
	5.3.2 Experimental Setup
	5.3.3 Results

	5.4 Conclusion

	6 Conclusions
	Appendix
	A Newton Updates for Integrated Covariate Shift Model
	B Optimality Conditions of Kernel Mean Matching
	C EM Updates for Nested Hierarchical Bayes

	Bibliography

