• Treffer 1 von 1
Zurück zur Trefferliste

Design and evaluation of radiation-hardened standard cell flip-flops

  • Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flipflop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. SeveralUse of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flipflop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP's 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from (32.4 MeV.cm(2)/mg) to (62.5 MeV.cm(2)/mg), depending on the variant.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Oliver SchrapeORCiDGND, Marko AndjelkovicORCiDGND, Anselm BreitenreiterORCiD, Steffen Zeidler, Alexey Balashov, Miloš KrstićORCiDGND
DOI:https://doi.org/10.1109/TCSI.2021.3109080
ISSN:1549-8328
ISSN:1558-0806
ISSN:1057-7122
Titel des übergeordneten Werks (Englisch):IEEE transactions on circuits and systems : a publication of the IEEE Circuits and Systems Society: 1, Regular papers
Verlag:Inst. of Electr. and Electronics Engineers
Verlagsort:New York, NY
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:07.11.2021
Erscheinungsjahr:2021
Datum der Freischaltung:20.09.2023
Freies Schlagwort / Tag:ASIC; Single event effect; design flow; fault tolerance; radhard design; triple modular redundancy
Band:68
Ausgabe:11
Seitenanzahl:14
Erste Seite:4796
Letzte Seite:4809
Fördernde Institution:European Union's Horizon 2020 Research and Innovation Programme [870365]; Federal Ministry of Education and ResearchFederal Ministry of Education & Research (BMBF) [16ME0134]; European Regional Development FundEuropean Commission; State Brandenburg [80175745]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer Review:Referiert
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.