The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 408
Back to Result List

Modeling the structure of tabular files for data preparation

Modellierung der Struktur von Tabellarische Dateien für die Datenaufbereitung

  • To manage tabular data files and leverage their content in a given downstream task, practitioners often design and execute complex transformation pipelines to prepare them. The complexity of such pipelines stems from different factors, including the nature of the preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory of tools, algorithms, and frameworks that practitioners need to master; and the volume, variety, and velocity of the files to be prepared. Metadata plays a fundamental role in reducing this complexity: characterizing a file assists end users in the design of data preprocessing pipelines, and furthermore paves the way for suggestion, automation, and optimization of data preparation tasks. Previous research in the areas of data profiling, data integration, and data cleaning, has focused on extracting and characterizing metadata regarding the content of tabular data files, i.e., about the records and attributes of tables. Content metadata are useful for the latter stages of a preprocessingTo manage tabular data files and leverage their content in a given downstream task, practitioners often design and execute complex transformation pipelines to prepare them. The complexity of such pipelines stems from different factors, including the nature of the preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory of tools, algorithms, and frameworks that practitioners need to master; and the volume, variety, and velocity of the files to be prepared. Metadata plays a fundamental role in reducing this complexity: characterizing a file assists end users in the design of data preprocessing pipelines, and furthermore paves the way for suggestion, automation, and optimization of data preparation tasks. Previous research in the areas of data profiling, data integration, and data cleaning, has focused on extracting and characterizing metadata regarding the content of tabular data files, i.e., about the records and attributes of tables. Content metadata are useful for the latter stages of a preprocessing pipeline, e.g., error correction, duplicate detection, or value normalization, but they require a properly formed tabular input. Therefore, these metadata are not relevant for the early stages of a preparation pipeline, i.e., to correctly parse tables out of files. In this dissertation, we turn our focus to what we call the structure of a tabular data file, i.e., the set of characters within a file that do not represent data values but are required to parse and understand the content of the file. We provide three different approaches to represent file structure, an explicit representation based on context-free grammars; an implicit representation based on file-wise similarity; and a learned representation based on machine learning. In our first contribution, we use the grammar-based representation to characterize a set of over 3000 real-world csv files and identify multiple structural issues that let files deviate from the csv standard, e.g., by having inconsistent delimiters or containing multiple tables. We leverage our learnings about real-world files and propose Pollock, a benchmark to test how well systems parse csv files that have a non-standard structure, without any previous preparation. We report on our experiments on using Pollock to evaluate the performance of 16 real-world data management systems. Following, we characterize the structure of files implicitly, by defining a measure of structural similarity for file pairs. We design a novel algorithm to compute this measure, which is based on a graph representation of the files' content. We leverage this algorithm and propose Mondrian, a graphical system to assist users in identifying layout templates in a dataset, classes of files that have the same structure, and therefore can be prepared by applying the same preparation pipeline. Finally, we introduce MaGRiTTE, a novel architecture that uses self-supervised learning to automatically learn structural representations of files in the form of vectorial embeddings at three different levels: cell level, row level, and file level. We experiment with the application of structural embeddings for several tasks, namely dialect detection, row classification, and data preparation efforts estimation. Our experimental results show that structural metadata, either identified explicitly on parsing grammars, derived implicitly as file-wise similarity, or learned with the help of machine learning architectures, is fundamental to automate several tasks, to scale up preparation to large quantities of files, and to provide repeatable preparation pipelines.show moreshow less
  • Anwender müssen häufig komplexe Pipelines zur Aufbereitung von tabellarischen Dateien entwerfen, um diese verwalten und ihre Inhalte für nachgelagerte Aufgaben nutzen zu können. Die Komplexität solcher Pipelines ergibt sich aus verschiedenen Faktoren, u.a. (i) aus der Art der Aufbereitungsaufgaben, die oft explorativ oder ad hoc für bestimmte Datensätze durchgeführt werden, (ii) aus dem großen Repertoire an Werkzeugen, Algorithmen und Frameworks, die von den Anwendern beherrscht werden müssen, sowie (iii) aus der Menge, der Größe und der Verschiedenartigkeit der aufzubereitenden Dateien. Metadaten spielen eine grundlegende Rolle bei der Verringerung dieser Komplexität: Die Charakterisierung einer Datei hilft den Nutzern bei der Gestaltung von Datenaufbereitungs-Pipelines und ebnet darüber hinaus den Weg für Vorschläge, Automatisierung und Optimierung von Datenaufbereitungsaufgaben. Bisherige Forschungsarbeiten in den Bereichen Data Profiling, Datenintegration und Datenbereinigung konzentrierten sich auf die Extraktion undAnwender müssen häufig komplexe Pipelines zur Aufbereitung von tabellarischen Dateien entwerfen, um diese verwalten und ihre Inhalte für nachgelagerte Aufgaben nutzen zu können. Die Komplexität solcher Pipelines ergibt sich aus verschiedenen Faktoren, u.a. (i) aus der Art der Aufbereitungsaufgaben, die oft explorativ oder ad hoc für bestimmte Datensätze durchgeführt werden, (ii) aus dem großen Repertoire an Werkzeugen, Algorithmen und Frameworks, die von den Anwendern beherrscht werden müssen, sowie (iii) aus der Menge, der Größe und der Verschiedenartigkeit der aufzubereitenden Dateien. Metadaten spielen eine grundlegende Rolle bei der Verringerung dieser Komplexität: Die Charakterisierung einer Datei hilft den Nutzern bei der Gestaltung von Datenaufbereitungs-Pipelines und ebnet darüber hinaus den Weg für Vorschläge, Automatisierung und Optimierung von Datenaufbereitungsaufgaben. Bisherige Forschungsarbeiten in den Bereichen Data Profiling, Datenintegration und Datenbereinigung konzentrierten sich auf die Extraktion und Charakterisierung von Metadaten über die Inhalte der tabellarischen Dateien, d.h. über die Datensätze und Attribute von Tabellen. Inhalts-basierte Metadaten sind für die letzten Phasen einer Aufbereitungspipeline nützlich, z.B. für die Fehlerkorrektur, die Erkennung von Duplikaten oder die Normalisierung von Werten, aber sie erfordern eine korrekt geformte tabellarische Eingabe. Daher sind diese Metadaten für die frühen Phasen einer Aufbereitungspipeline, d.h. für das korrekte Parsen von Tabellen aus Dateien, nicht relevant. In dieser Dissertation konzentrieren wir uns die Struktur einer tabellarischen Datei nennen, d.h. die Menge der Zeichen in einer Datei, die keine Datenwerte darstellen, aber erforderlich sind, um den Inhalt der Datei zu analysieren und zu verstehen. Wir stellen drei verschiedene Ansätze zur Darstellung der Dateistruktur vor: eine explizite Darstellung auf der Grundlage kontextfreier Grammatiken, eine implizite Darstellung auf der Grundlage von Dateiähnlichkeiten und eine erlernte Darstellung auf der Grundlage von maschinellem Lernen. In unserem ersten Ansatz verwenden wir die grammatikbasierte Darstellung, um eine Menge von über 3000 realen CSV-Dateien zu charakterisieren und mehrere strukturelle Probleme zu identifizieren, die dazu führen, dass Dateien vom CSV-Standard abweichen, z.B. durch inkonsistente Begrenzungszeichen oder dem Enthalten mehrere Tabellen in einer einzelnen Datei. Wir nutzen unsere Erkenntnisse aus realen Dateien und schlagen Pollock vor, einen Benchmark, der testet, wie gut Systeme unaufbereitete CSV-Dateien parsen. Wir berichten über unsere Experimente zur Verwendung von Pollock, in denen wir die Leistung von 16 realen Datenverwaltungssystemen bewerten. Anschließend charakterisieren wir die Struktur von Dateien implizit, indem wir ein Maß für die strukturelle Ähnlichkeit von Dateipaaren definieren. Wir entwickeln einen neuartigen Algorithmus zur Berechnung dieses Maßes, der auf einer Graphen-basierten Darstellung des Dateiinhalts basiert. Wir nutzen diesen Algorithmus und schlagen Mondrian vor, ein grafisches System zur Unterstützung der Benutzer bei der Identifizierung von Layout Vorlagen in einem Datensatz, d.h. von Dateiklassen, die die gleiche Struktur aufweisen und daher mit der gleichen Pipeline aufbereitet werden können. Schließlich stellen wir MaGRiTTE vor, eine neuartige Architektur, die selbst- überwachtes Lernen verwendet, um automatisch strukturelle Darstellungen von Dateien in Form von vektoriellen Einbettungen auf drei verschiedenen Ebenen zu lernen: auf Zellebene, auf Zeilenebene und auf Dateiebene. Wir experimentieren mit der Anwendung von strukturellen Einbettungen für verschiedene Aufgaben, nämlich Dialekterkennung, Zeilenklassifizierung und der Schätzung des Aufwands für die Datenaufbereitung. Unsere experimentellen Ergebnisse zeigen, dass strukturelle Metadaten, die entweder explizit mit Hilfe von Parsing-Grammatiken identifiziert, implizit als Dateiähnlichkeit abgeleitet oder mit Machine-Learning Architekturen erlernt werden, von grundlegender Bedeutung für die Automatisierung verschiedener Aufgaben, die Skalierung der Aufbereitung auf große Mengen von Dateien und die Bereitstellung wiederholbarer Aufbereitungspipelines sind.show moreshow less

Download full text files

  • SHA-512:e1e581fc755582519a8b2d959898bd24d9925854f958b69ff98f9c5854b18ccc5ea1309b8032d20dc3ae65ab94b2ea7ebc9372cd47318e8aeddb87db59d1e056

Export metadata

Metadaten
Author details:Gerardo VitaglianoORCiDGND
URN:urn:nbn:de:kobv:517-opus4-624351
DOI:https://doi.org/10.25932/publishup-62435
Reviewer(s):Felix NaumannORCiDGND, Sebastian SchelterORCiDGND, Paolo PapottiORCiD
Supervisor(s):Felix Naumann
Publication type:Doctoral Thesis
Language:English
Publication year:2024
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/12/14
Release date:2024/02/09
Tag:Dateistruktur; Datenaufbereitung; tabellarische Dateien
data preparation; file structure; tabular data
Number of pages:ii, 114
RVK - Regensburg classification:ST 265
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
MSC classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.)
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.