The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 121
Back to Result List

Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication

  • Bacterivory by mixotrophic flagellates may contribute to their nutrient supply, providing a competitive advantage in oligotrophic waters. We hypothesized an increase in Dinobryon biomass during the re-oligotrophication process in the large and deep Lake Constance. To estimate whether bacterivory contributed substantially to the flagellates' phosphorus supply, we determined ingestion rates. Dinobryon biomass increased with decreasing total phosphorus concentrations in the lake over a period of 17 years (P = 0.0005). The promotion of Dinobryon biomass during re-oligotrophication may be explained by the increasing light availability due to the decreasing biomass of other phytoplankton yielding a release from competition. The date of the Dinobryon abundance maximum shifted to earlier time points in the year, probably because a smaller phosphorus pool was depleted more quickly. Ingestion rates of Dinobryon ranged between 0.5 and 13 bacteria cell(-1) h(-1) (0.2-5.4 fg C pg C-1 h(-1)), and clearance rates varied between 0.2 and 3.2 nLBacterivory by mixotrophic flagellates may contribute to their nutrient supply, providing a competitive advantage in oligotrophic waters. We hypothesized an increase in Dinobryon biomass during the re-oligotrophication process in the large and deep Lake Constance. To estimate whether bacterivory contributed substantially to the flagellates' phosphorus supply, we determined ingestion rates. Dinobryon biomass increased with decreasing total phosphorus concentrations in the lake over a period of 17 years (P = 0.0005). The promotion of Dinobryon biomass during re-oligotrophication may be explained by the increasing light availability due to the decreasing biomass of other phytoplankton yielding a release from competition. The date of the Dinobryon abundance maximum shifted to earlier time points in the year, probably because a smaller phosphorus pool was depleted more quickly. Ingestion rates of Dinobryon ranged between 0.5 and 13 bacteria cell(-1) h(-1) (0.2-5.4 fg C pg C-1 h(-1)), and clearance rates varied between 0.2 and 3.2 nL cell(-1) h(-1) (4-78 pL pg C-1 h(-1)), leading to bacterial losses of up to 30% day(-1) of bacterial standing stock. The ingestion of bacteria covered 77% of the phosphorus need of the flagellate during the period of maximum growth in 1996 (net growth rate 0.34 day(-1)), and it fully covered the need at all other times.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Norbert KamjunkeORCiDGND, Ursula GaedkeORCiDGND
URL:http://plankt.oxfordjournals.org/
DOI:https://doi.org/10.1093/plankt/fb1054
ISSN:0142-7873
Further contributing person(s):Tanja Henrichs
Publication type:Article
Language:English
Year of first publication:2007
Publication year:2007
Release date:2017/03/25
Source:Journal of plankton research. - ISSN 0142-7873. - 29 (2007), 1, S. 39 - 46
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.