• search hit 7 of 36
Back to Result List

Rapid TeV Gamma-Ray flaring of bl lacertae

  • We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 +/- 0.6) x 10(-6) photons m(-2) s(-1), roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 +/- 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 +/- 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-rayWe report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 +/- 0.6) x 10(-6) photons m(-2) s(-1), roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 +/- 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 +/- 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:T. Arlen, T. Aune, M. Beilicke, W. Benbow, A. Bouvier, J. H. Buckley, V. Bugaev, A. Cesarini, L. Ciupik, M. P. Connolly, W. Cui, R. Dickherber, J. Dumm, M. Errando, A. Falcone, S. Federici, Q. Feng, J. P. Finley, G. Finnegan, L. Fortson, A. Furniss, N. Galante, D. Gall, S. Griffin, J. Grube, G. Gyuk, D. Hanna, J. Holder, T. B. Humensky, P. Kaaret, N. Karlsson, M. Kertzman, Y. Khassen, D. Kieda, H. Krawczynski, F. Krennrich, G. Maier, P. Moriarty, R. Mukherjee, T. Nelson, A. O'Faolain de Bhroithe, R. A. Ong, M. Orr, N. Park, J. S. Perkins, A. Pichel, Martin PohlORCiDGND, H. Prokoph, J. Quinn, K. Ragan, L. C. Reyes, P. T. Reynolds, E. Roache, D. B. Saxon, M. Schroedter, G. H. Sembroski, D. Staszak, I. Telezhinsky, G. Tesic, M. Theiling, K. Tsurusaki, A. Varlotta, S. Vincent, S. P. Wakely, T. C. Weekes, A. Weinstein, R. Welsing, D. A. Williams, B. Zitzer, S. G. Jorstad, N. R. MacDonald, A. P. Marscher, P. S. Smith, R. C. Walker, T. Hovatta, J. Richards, W. Max-Moerbeck, A. Readhead, M. L. Lister, Y. Y. Kovalev, A. B. Pushkarev, M. A. Gurwell, A. Lahteenmaki, E. Nieppola, M. Tornikoski, E. Jarvela
DOI:https://doi.org/10.1088/0004-637X/762/2/92
ISSN:0004-637X (print)
Parent Title (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publication:Bristol
Document Type:Article
Language:English
Year of first Publication:2013
Year of Completion:2013
Creating Corporation:VERITAS Collaboration
Release Date:2017/03/26
Tag:galaxies: active; galaxies: individual (BL Lacertae, VER J2202+422); gamma rays: galaxies
Volume:762
Issue:2
Pagenumber:13
Funder:U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K; NASA [NNX08AV65G, NNX08AV61G, NNX09AT99G, NNX11AQ03G, NNX08AW31G, NNX11A043G, NNX08AV67G]; NSF [AST-0907893, AST-0808050, AST-1109911]; Russian Foundation for Basic Research [11-02-00368, 12-02-33101]; Physical Sciences Division of the Russian Academy of Sciences; Dynasty Foundation; Academia Sinica; Fermi Guest Investigator grants [NNX08AW56G, NNX09AU10G]; Academy of Finland [212656, 210338, 121148]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert