Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 5 von 23
Zurück zur Trefferliste

On the relation between the open‐circuit voltage and quasi‐Fermi level splitting in efficient perovskite solar cells

  • Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, itToday's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr774.pdfeng
    (1601KB)

    SHA-1: 70fd1ee801e6958144f339f749dde09face52325

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Pietro CaprioglioORCiDGND, Martin StolterfohtORCiD, Christian Michael WolffORCiDGND, Thomas UnoldORCiD, Bernd RechORCiDGND, Steve AlbrechtORCiDGND, Dieter NeherORCiDGND
URN:urn:nbn:de:kobv:517-opus4-437595
DOI:https://doi.org/10.25932/publishup-43759
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (774)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:22.11.2019
Erscheinungsjahr:2019
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:22.11.2019
Freies Schlagwort / Tag:electro‐optical materials; perovskite solar cells; photovoltaic devices; thin films
Ausgabe:774
Seitenanzahl:10
Quelle:Advanced Energy Materials 9 (2019) 33, Art. 1901631 DOI: 10.1002/aenm.201901631
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
Peer Review:Referiert
Publikationsweg:Open Access
Fördermittelquelle:DEAL Wiley
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.