The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 13
Back to Result List

Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales

  • Soil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbation methods are presented for the characterization of uncertainties in soil properties. The methods are applied on the soil map of the upper Neckar catchment (Germany), as an example. The uncertainties are propagated through the distributed mesoscale hydrological model (mHM) to assess the impact on the simulated states and fluxes. The model outputs are analysed by aggregating the results at different spatial and temporal scales. These results show that the impact of the different uncertainties introduced in the original soil map is equivalent when the simulated model outputs are analysed at the model grid resolution (i.e. 500 m). However, several differences are identified by aggregatingSoil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbation methods are presented for the characterization of uncertainties in soil properties. The methods are applied on the soil map of the upper Neckar catchment (Germany), as an example. The uncertainties are propagated through the distributed mesoscale hydrological model (mHM) to assess the impact on the simulated states and fluxes. The model outputs are analysed by aggregating the results at different spatial and temporal scales. These results show that the impact of the different uncertainties introduced in the original soil map is equivalent when the simulated model outputs are analysed at the model grid resolution (i.e. 500 m). However, several differences are identified by aggregating states and fluxes at different spatial scales (by subcatchments of different sizes or coarsening the grid resolution). Streamflow is only sensitive to the perturbation of long spatial structures while distributed states and fluxes (e.g. soil moisture and groundwater recharge) are only sensitive to the local noise introduced to the original soil properties. A clear identification of the temporal and spatial scale for which finer-resolution soil information is (or is not) relevant is unlikely to be universal. However, the comparison of the impacts on the different hydrological components can be used to prioritize the model improvements in specific applications, either by collecting new measurements or by calibration and data assimilation approaches. In conclusion, the study underlines the importance of a correct characterization of uncertainty in soil properties. With that, soil maps with additional information regarding the unresolved soil spatial variability would provide strong support to hydrological modelling applications.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gabriele BaroniORCiDGND, Matthias Zink, Rohini KumarORCiD, Luis SamaniegoORCiDGND, Sabine AttingerORCiDGND
DOI:https://doi.org/10.5194/hess-21-2301-2017
ISSN:1027-5606
ISSN:1607-7938
Title of parent work (English):Hydrology and earth system sciences : HESS
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:21
Number of pages:20
First page:2301
Last Page:2320
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [CI 26/13-1]; Helmholtz Alliance - Remote Sensing and Earth System Dynamics (HGF-EDA)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.