• search hit 4 of 6
Back to Result List

Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the Mygdonia basin-Euroseistest area, northern Greece

  • We examine the use of ambient noise cross-correlation tomography for shallow site characterization using a modified two-step approach. Initially, we extract Rayleigh wave traveltimes from correlation traces of vertical component seismic recordings from a local network installed in Mygdonia basin, northern Greece. The obtained Rayleigh wave traveltimes show significant spatial variability, as well as distance and frequency dependence due to the 3-D structure of the area, dispersion, and anelastic attenuation effects. The traveltime data sets are inverted through a surface wave tomography approach to determine group velocity maps for each frequency. The proposed tomographic inversion involves the use of approximate Fresnel volumes and interfrequency smoothing constraints to stabilize the results. In the last step, we determine a final 3-D velocity model using a node-based Monte Carlo 1-D dispersion curve inversion. The reliability of the final 3-D velocity model is examined by spatial and depth resolution analysis, as well as byWe examine the use of ambient noise cross-correlation tomography for shallow site characterization using a modified two-step approach. Initially, we extract Rayleigh wave traveltimes from correlation traces of vertical component seismic recordings from a local network installed in Mygdonia basin, northern Greece. The obtained Rayleigh wave traveltimes show significant spatial variability, as well as distance and frequency dependence due to the 3-D structure of the area, dispersion, and anelastic attenuation effects. The traveltime data sets are inverted through a surface wave tomography approach to determine group velocity maps for each frequency. The proposed tomographic inversion involves the use of approximate Fresnel volumes and interfrequency smoothing constraints to stabilize the results. In the last step, we determine a final 3-D velocity model using a node-based Monte Carlo 1-D dispersion curve inversion. The reliability of the final 3-D velocity model is examined by spatial and depth resolution analysis, as well as by inversion for different model parameterizations. The obtained results are in very good agreement with previous findings from seismic and other geophysical methods. The new 3-D VS model provides additional structural constraints for the shallow sediments and bedrock structure of the northern Mygdonia basin up to the depth of similar to 200-250 m. Present work results suggest that the migration of ambient tomography techniques from large scales (tens or hundreds of km) to local scales (few hundred meters) is possible but cannot be used as a black box technique for 3-D modeling and detailed geotechnical site characterization.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Katrin HannemannORCiDGND, Costas Papazachos, Matthias OhrnbergerORCiDGND, Alexandros Savvaidis, Marios Anthymidis, Agostiny Marrios LontsiORCiDGND
DOI:https://doi.org/10.1002/2013JB010914
ISSN:2169-9313
ISSN:2169-9356
Title of parent work (English):Journal of geophysical research : Solid earth
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:119
Issue:6
Number of pages:21
First page:4979
Last Page:4999
Funding institution:project "Efficient high-frequency surface wave tomography for seismological site characterization" of the IKY-DAAD Greek-German scientific cooperation program; project MuSaWa within the scope of R&D programme GEOTECHNOLOGIEN of the German Ministry of Education and Research [03G0745]; Greek-Slovak exchange project [87085]; EC Social Fund; Greek Secretariat of Research and Technology
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.