• search hit 2 of 44
Back to Result List

Contributions to the mineralogical and geochemical characterization of Fe-Sn-Zn-Cu-In skarn-type mineralization in the Schwarzenberg mining district, Germany

  • The Schwarzenberg mining district in the western Erzgebirge hosts numerous skarn-hosted tin-polymetallic deposits, such as Breitenbrunn. The St. Christoph mine is located in the Breitenbrunn deposit and is the locus typicus of christophite, an iron-rich sphalerite variety, which can be associated with indium enrichment. This study presents a revision of the paragenetic scheme, a contribution to the indium behavior and potential, and discussion on the origin of the sulfur. This was achieved through reflected light microscopy, SEM-based MLA, EPMA, and bulk mineral sulfur isotope analysis on 37 sulfide-rich skarn samples from a mineral collection. The paragenetic scheme includes: a pre-mineralization stage of anhydrous calc-silicates and hydrous minerals; an oxide stage, dominated by magnetite; a sulfide stage of predominantly sphalerite, minor pyrite, chalcopyrite, arsenopyrite, and galena. Some sphalerite samples present elevated indium contents of up to 0.44 wt%. Elevated iron contents (4-10 wt%) in sphalerite can be tentativelyThe Schwarzenberg mining district in the western Erzgebirge hosts numerous skarn-hosted tin-polymetallic deposits, such as Breitenbrunn. The St. Christoph mine is located in the Breitenbrunn deposit and is the locus typicus of christophite, an iron-rich sphalerite variety, which can be associated with indium enrichment. This study presents a revision of the paragenetic scheme, a contribution to the indium behavior and potential, and discussion on the origin of the sulfur. This was achieved through reflected light microscopy, SEM-based MLA, EPMA, and bulk mineral sulfur isotope analysis on 37 sulfide-rich skarn samples from a mineral collection. The paragenetic scheme includes: a pre-mineralization stage of anhydrous calc-silicates and hydrous minerals; an oxide stage, dominated by magnetite; a sulfide stage of predominantly sphalerite, minor pyrite, chalcopyrite, arsenopyrite, and galena. Some sphalerite samples present elevated indium contents of up to 0.44 wt%. Elevated iron contents (4-10 wt%) in sphalerite can be tentatively linked to increased indium incorporation, but further analyses are required. Analyzed sulfides exhibit homogeneous delta S-34 values (-1 to +2 parts per thousand VCDT), assumed to be post-magmatic. They correlate with other Fe-Sn-Zn-Cu-In skarn deposits in the western Erzgebirge, and Permian vein-hosted associations throughout the Erzgebirge region.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Malte StoltnowORCiDGND, Thomas Seifert, Tilman J. Jeske, Sabine Gilbricht, Joachim Krause
Title of parent work (English):Life with Ore Deposits on Earth – 15th SGA Biennial Meeting 2019
Publisher:SGA Soc Geology Applied mineral depositis
Place of publishing:Geneva
Publication type:Other
Language:English
Year of first publication:2019
Publication year:2019
Release date:2021/04/26
Number of pages:4
First page:1089
Last Page:1092
Funding institution:TU Bergakademie Freiberg; Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.