• search hit 2 of 9
Back to Result List

Flow-induced transitions in bistable systems

  • We studied transitions between spatiotemporal patterns that can be induced in a spatially extended nonlinear chemical system by a unidirectional flow in combination with constant inflow concentrations. Three different scenarios were investigated. (i) Under conditions where the system exhibited two stable fixed points, the propagation direction of trigger fronts could be reversed, so that domains of the less stable fixed point invaded the system. (ii) For bistability between a stable fixed point and a limit cycle we observed that above a critical flow velocity, the unstable focus at the center of the limit cycle could be stabilized. Increasing the flow speed further, a regime of damped flow-distributed oscillations was found and, depending on the boundary values at the inflow, finally the stable fixed point dominated. Similarly, also in the case of spatiotemporal chaos (iii), the unstable steady state could be stabilized and was replaced by the stable fixed point with increasing flow velocity. We finally outline a linear stabilityWe studied transitions between spatiotemporal patterns that can be induced in a spatially extended nonlinear chemical system by a unidirectional flow in combination with constant inflow concentrations. Three different scenarios were investigated. (i) Under conditions where the system exhibited two stable fixed points, the propagation direction of trigger fronts could be reversed, so that domains of the less stable fixed point invaded the system. (ii) For bistability between a stable fixed point and a limit cycle we observed that above a critical flow velocity, the unstable focus at the center of the limit cycle could be stabilized. Increasing the flow speed further, a regime of damped flow-distributed oscillations was found and, depending on the boundary values at the inflow, finally the stable fixed point dominated. Similarly, also in the case of spatiotemporal chaos (iii), the unstable steady state could be stabilized and was replaced by the stable fixed point with increasing flow velocity. We finally outline a linear stability analysis that can explain part of our findings.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Igal Berenstein, Carsten BetaORCiDGND
DOI:https://doi.org/10.1103/PhysRevE.86.056205
ISSN:1539-3755
Title of parent work (English):Physical review : E, Statistical, nonlinear and soft matter physics
Publisher:American Physical Society
Place of publishing:College Park
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:86
Issue:5
Number of pages:6
Funding institution:Alexander von Humboldt foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.