The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 6
Back to Result List

Determinants of woody cover in African savannas

  • Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties(1-3). The availability of resources ( water, nutrients) and disturbance regimes ( fire, herbivory) are thought to be important in regulating woody cover(1,2,4,5), but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than similar to 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP- controlled upper bound. Above a MAP of similar to 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woodySavannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties(1-3). The availability of resources ( water, nutrients) and disturbance regimes ( fire, herbivory) are thought to be important in regulating woody cover(1,2,4,5), but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than similar to 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP- controlled upper bound. Above a MAP of similar to 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances ( fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation(6) may considerably affect their distribution and dynamicsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mahesh Sankaran, Niall P. Hanan, Robert J. Scholes, Jayashree Ratnam, Brian S. Cade, Jonas Ardo, David J. Augustine, Feetham Banyikwa, Andries Bronn, Gabriela Bucini, Kelly K. Caylor, Michael B. Coughenour, Alioune Diouf, Christie J. Feral, Edmund C. February, Peter G. H. Frost
Further contributing person(s):James Gambiza, Jacques Gignoux, Pierre Hiernaux, Steven I. Higgins, Halszka Hrabar, Xavier LeRoux, Kristine L. Metzger, Herbert H. T. Prins, Wiliam Sea, Jörg Tews, Jeff Worden
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Nature. - 438 (2005), S. 846 - 849
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.