The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 5
Back to Result List

Scaling relations of earthquake source parameter estimates with special focus on subduction environment

  • Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well asEarthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lilian Blaser, Frank KrügerGND, Matthias OhrnbergerORCiDGND, Frank ScherbaumORCiDGND
URL:http://bssa.geoscienceworld.org/
DOI:https://doi.org/10.1785/0120100111
ISSN:0037-1106
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Bulletin of the Seismological Society of America. - ISSN 0037-1106. - 100 (2010), 6, S. 2914 - 2926
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.