The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 28
Back to Result List

Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: A > 100 k.y. chronology from the Shyok Valley, Karakoram

  • Some of the largest and most erosive floods on Earth result from the failure of glacial dams. While potentially cataclysmic ice dams are recognized to have repeatedly formed along ice-sheet margins, much less is known about the frequency and longevity of ice dams caused by mountain glaciers, and their impact on landscape evolution. Here we present field observations and results from cosmogenic nuclide dating that allow reconstructing a > 100-k.y.-long history of glacial damming in the Shyok Valley, eastern Karakoram (South Asia). Our field observations provide evidence that Asia's second-longest glacier, the Siachen, once extended for over 180 km and blocked the Shyok River during the penultimate glacial period, leading to upstream deposition of a more than 400-m-thick fluvio-lacustrine valley fill. Be-10-depth profile modeling indicates that glacial damming ended with the onset of the Eemian interglacial and that the Shyok River subsequently incised the valley fill at an average rate of similar to 4-7 m k.y.(-1). Comparison withSome of the largest and most erosive floods on Earth result from the failure of glacial dams. While potentially cataclysmic ice dams are recognized to have repeatedly formed along ice-sheet margins, much less is known about the frequency and longevity of ice dams caused by mountain glaciers, and their impact on landscape evolution. Here we present field observations and results from cosmogenic nuclide dating that allow reconstructing a > 100-k.y.-long history of glacial damming in the Shyok Valley, eastern Karakoram (South Asia). Our field observations provide evidence that Asia's second-longest glacier, the Siachen, once extended for over 180 km and blocked the Shyok River during the penultimate glacial period, leading to upstream deposition of a more than 400-m-thick fluvio-lacustrine valley fill. Be-10-depth profile modeling indicates that glacial damming ended with the onset of the Eemian interglacial and that the Shyok River subsequently incised the valley fill at an average rate of similar to 4-7 m k.y.(-1). Comparison with contemporary ice-dammed lakes in the Karakoram and elsewhere suggests recurring outburst floods during the aggradation period, while over 25 cycles of fining-upward lake deposits within the valley fill indicate impounding of floods from farther upstream. Despite prolonged damming, the net effect of this and probably earlier damming episodes by the Siachen Glacier is dominated by glacial erosion in excess of fluvial incision, as evidenced by a pronounced overdeepening that follows the glaciated valley reach. Strikingly similar overdeepened valleys at all major confluences of the Shyok and Indus Rivers with Karakoram tributaries indicate that glacial dams and subsequent outburst floods have been widespread and frequent in this region during the Quaternary. Our study suggests that the interaction of Karakoram glaciers with the Shyok and Indus Rivers promoted valley incision and headward erosion into the western margin of the Tibetan Plateau.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dirk Scherler, Henry Munack, Jürgen MeyORCiDGND, Patricia EugsterORCiD, Hella WittmannORCiDGND, Alexandru T. Codilean, Peter Kubik, Manfred StreckerORCiDGND
DOI:https://doi.org/10.1130/B30942.1
ISSN:0016-7606
ISSN:1943-2674
Title of parent work (English):Geological Society of America bulletin
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:126
Issue:5-6
Number of pages:21
First page:738
Last Page:758
Funding institution:German Federal Ministry of Education and Research (BMBF); Alexander von Humboldt Foundation; DFG [KO3937/2, STR373/21-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.