• search hit 3 of 3
Back to Result List

Three-dimensional hydrostratigraphic models from ground-penetrating radar and direct-push data

  • Three-dimensional models of hydraulic conductivity and porosity are essential to understand and simulate groundwater flow in heterogeneous geological environments. However, considering the inherent limitations of traditional hydrogeological field methods in terms of resolution, alternative field approaches are needed to establish such 3-D models with sufficient accuracy. In this study, we developed a workflow combining 3-D structural information extracted from ground penetrating radar (GPR) images with 1-D in situ physical-property estimates from direct-push (DP) logging to construct a 3-D hydrostratigraphic model. To illustrate this workflow, we collected an similar to 70 m x 90 m 100 MHz 3-D GPR data set over a shallow sedimentary aquifer system resolving six different GPR facies down to similar to 15 m depth. DP logs of the relative dielectric permittivity, the relative hydraulic conductivity, the cone resistance, the sleeve friction and the pore pressure provided crucial data (1) to establish a GPR velocity model for 3-D depthThree-dimensional models of hydraulic conductivity and porosity are essential to understand and simulate groundwater flow in heterogeneous geological environments. However, considering the inherent limitations of traditional hydrogeological field methods in terms of resolution, alternative field approaches are needed to establish such 3-D models with sufficient accuracy. In this study, we developed a workflow combining 3-D structural information extracted from ground penetrating radar (GPR) images with 1-D in situ physical-property estimates from direct-push (DP) logging to construct a 3-D hydrostratigraphic model. To illustrate this workflow, we collected an similar to 70 m x 90 m 100 MHz 3-D GPR data set over a shallow sedimentary aquifer system resolving six different GPR facies down to similar to 15 m depth. DP logs of the relative dielectric permittivity, the relative hydraulic conductivity, the cone resistance, the sleeve friction and the pore pressure provided crucial data (1) to establish a GPR velocity model for 3-D depth migration and to check the time-to-depth conversion of the GPR data, and (2) to construct a 3-D hydrostratigraphic model. This model was built by assigning porosity values, which were computed from the DP relative dielectric permittivity logs, and DP relative hydraulic conductivity estimates to the identified GPR facies. We conclude that the integration of 3-D GPR structural images and 1-D DP logs of target physical parameters provides an efficient way for detailed 3-D subsurface characterization as needed, for example, for groundwater flow simulations.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:C. Schmelzbach, Jens TronickeORCiDGND, P. Dietrich
DOI:https://doi.org/10.1016/j.jhydrol.2010.12.023
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Aquifer; Direct push; Ground-penetrating radar; Hydrostratigraphic model; Saturated zone; Three-dimensional
Volume:398
Issue:3-4
Number of pages:11
First page:235
Last Page:245
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [TR 512/3-1, DI 833/6-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.