• Treffer 1 von 1
Zurück zur Trefferliste

Speed limit of the insulator-metal transition in magnetite

  • As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit forAs the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10).zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:S. de Jong, R. Kukreja, C. Trabant, N. Pontius, C. F. Chang, T. Kachel, Martin BeyeORCiDGND, Florian SorgenfreiORCiDGND, C. H. Back, B. Braeuer, W. F. Schlotter, J. J. Turner, O. Krupin, M. Doehler, D. Zhu, M. A. Hossain, A. O. Scherz, D. Fausti, F. Novelli, M. Esposito, W. S. Lee, Y. D. Chuang, D. H. Lu, R. G. Moore, M. Yi, M. Trigo, P. Kirchmann, L. Pathey, M. S. Golden, Marcel Buchholz, P. Metcalf, F. Parmigiani, W. Wurth, Alexander FöhlischORCiDGND, Christian Schuessler-LangeheineORCiD, H. A. Duerr
DOI:https://doi.org/10.1038/NMAT3718
ISSN:1476-1122
ISSN:1476-4660
Titel des übergeordneten Werks (Englisch):Nature materials
Verlag:Nature Publ. Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2013
Erscheinungsjahr:2013
Datum der Freischaltung:26.03.2017
Band:12
Ausgabe:10
Seitenanzahl:5
Erste Seite:882
Letzte Seite:886
Fördernde Institution:Stanford Institute for Materials and Energy Sciences (SIMES) [DE-AC02-76SF00515]; LCLS by the US Department of Energy, Office of Basic Energy Sciences; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; University of Hamburg through the BMBF priority programme FSP [301]; Center for Free Electron Laser Science (CFEL); FOM/NWO; Helmholtz Virtual Institute Dynamic Pathways in Multidimensional Landscapes; DFG [SFB 608]; BMBF [05K10PK2]; SFB [925]; European Union Seventh Framework Programme [280555]; Italian Ministry of University and Research [FIRB-RBAP045JF2, FIRB-RBAP06AWK3]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.