The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 26
Back to Result List

Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

  • In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the transcis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup toIn this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the transcis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings. (C) 2014 AIP Publishing LLC.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nataraja Sekhar Yadavalli, Marina SaphiannikovaORCiD, Svetlana SanterORCiDGND
DOI:https://doi.org/10.1063/1.4891615
ISSN:0003-6951
ISSN:1077-3118
Title of parent work (English):Applied physics letters
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:105
Issue:5
Number of pages:5
Funding institution:DFG [SPP-1369, GR 3725/2-2]; Volkswagen Stiftung, Germany
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.