• search hit 1 of 1
Back to Result List

Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in chlamydomonas

  • The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b(6)f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincidesThe vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b(6)f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the Q(A)/Q(A)(-) redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andre Nordhues, Mark Aurel SchöttlerORCiDGND, Ann-Katrin Unger, Stefan Geimer, Stephanie Schönfelder, Stefan Schmollinger, Mark Ruetgers, Giovanni Finazzi, Barbara Soppa, Frederik Sommer, Timo Mühlhaus, Thomas Roach, Anja Krieger-Liszkay, Heiko Lokstein, Jose Luis Crespo, Michael Schroda
DOI:https://doi.org/10.1105/tpc.111.092692
ISSN:1040-4651
Title of parent work (English):The plant cell
Publisher:American Society of Plant Physiologists
Place of publishing:Rockville
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:24
Issue:2
Number of pages:23
First page:637
Last Page:659
Funding institution:Max Planck Society; Deutsche Forschungsgemeinschaft [617/2-4, 617/5-1]; Bundesministerium fur Bildung und Forschung (Systems Biology Initiative FORSYS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.