• search hit 6 of 13
Back to Result List

Pliocene-Pleistocene orographic control on denudation in northwest Argentina

  • The intermontane Humahuaca Basin in the Eastern Cordillera of the northwest Argentine Andes lies leeward of an orographic barrier to easterly derived moisture. An average of >2000 mm/yr of rainfall along the eastern flanks of the barrier contrasts with <200 mm/yr in the orogen interior. Paleoenvironmental reconstructions suggest that the basin became disconnected from the foreland during the Miocene-Pliocene by the growth of fault-bounded mountain ranges. Fossil records, sedimentology, and stable isotope data imply that rerouting of the fluvial network by 4.2 Ma and reduced rainfall by ca. 3 Ma were consequences of that range uplift. Here, we present cosmogenic nuclide-derived (Be-10) paleodenudation rates from 6 to 2 Ma fluvial deposits collected from the Humahuaca Basin. Despite increased tectonic activity, our Be-10 data show a tenfold decrease in denudation rates at ca. 3 Ma, documenting a link between uplift-induced semiarid conditions and decreasing hillslope denudation rates. This new data set thus demonstrates the influence ofThe intermontane Humahuaca Basin in the Eastern Cordillera of the northwest Argentine Andes lies leeward of an orographic barrier to easterly derived moisture. An average of >2000 mm/yr of rainfall along the eastern flanks of the barrier contrasts with <200 mm/yr in the orogen interior. Paleoenvironmental reconstructions suggest that the basin became disconnected from the foreland during the Miocene-Pliocene by the growth of fault-bounded mountain ranges. Fossil records, sedimentology, and stable isotope data imply that rerouting of the fluvial network by 4.2 Ma and reduced rainfall by ca. 3 Ma were consequences of that range uplift. Here, we present cosmogenic nuclide-derived (Be-10) paleodenudation rates from 6 to 2 Ma fluvial deposits collected from the Humahuaca Basin. Despite increased tectonic activity, our Be-10 data show a tenfold decrease in denudation rates at ca. 3 Ma, documenting a link between uplift-induced semiarid conditions and decreasing hillslope denudation rates. This new data set thus demonstrates the influence of hydrological change on spatiotemporal denudation patterns in tectonically active mountain areas.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Heiko PingelORCiDGND, Taylor F. SchildgenORCiD, Manfred StreckerORCiDGND, Hella WittmannORCiDGND
DOI:https://doi.org/10.1130/G45800.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Date of first publication:2019/02/27
Publication year:2019
Release date:2021/03/10
Volume:47
Issue:4
Number of pages:4
First page:359
Last Page:362
Funding institution:Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [SCHI 1241/1-1]; DFGGerman Research Foundation (DFG) [STR 373/34-1]; Brandenburg Ministry of Sciences, Research and Cultural Affairs, Germany [IGK2018]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.