• Treffer 2 von 32
Zurück zur Trefferliste

Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels

  • Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with theQuantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Suvendu Sekhar MondalORCiDGND, Alex KreuzerGND, Karsten BehrensGND, Gisela Schütz, Hans-Jürgen HoldtORCiD, Michael HirscherORCiDGND
DOI:https://doi.org/10.1002/cphc.201900183
ISSN:1439-4235
ISSN:1439-7641
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31017710
Titel des übergeordneten Werks (Englisch):ChemPhysChem : a European journal of chemical physics and physical chemistry
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:24.04.2019
Erscheinungsjahr:2019
Datum der Freischaltung:08.02.2021
Freies Schlagwort / Tag:gas adsorption; hydrogen isotopes; isotope separation; metal-organic frameworks; quantum sieving
Band:20
Ausgabe:10
Seitenanzahl:5
Erste Seite:1311
Letzte Seite:1315
Fördernde Institution:German Research FoundationGerman Research Foundation (DFG) [SPP 1362, HO 1706/7-1, HO 1706/7-2]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.