The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 6
Back to Result List

Full microtremor H/V(z,f) inversion for shallow subsurface characterization

  • The H/V spectral ratio has emerged as a single station method within the seismic ambient noise analysis field by its capability to quickly estimate the frequency of resonance at a site and through inversion the average profile information. Although it is easy to compute from experimental data, its counter theoretical part is not obvious when building a forward model which can help in reconstructing the derived H/V spectrum. This has led to the simplified assumption that the noise wavefield is mainly composed of Rayleigh waves and the derived H/V often used without further correction. Furthermore, only the right (and left) flank around the H/V peak frequency is considered in the inversion for the subsurface 1-D shear wave velocity profile. A new theoretical approach for the interpretation of the H/V spectral ratio has been presented by Sanchez-Sesmaet al. In this paper, the fundamental idea behind their theory is presented as it applies to receivers at depth. A smooth H/V(z, f) spectral curve on a broad frequency range is obtained byThe H/V spectral ratio has emerged as a single station method within the seismic ambient noise analysis field by its capability to quickly estimate the frequency of resonance at a site and through inversion the average profile information. Although it is easy to compute from experimental data, its counter theoretical part is not obvious when building a forward model which can help in reconstructing the derived H/V spectrum. This has led to the simplified assumption that the noise wavefield is mainly composed of Rayleigh waves and the derived H/V often used without further correction. Furthermore, only the right (and left) flank around the H/V peak frequency is considered in the inversion for the subsurface 1-D shear wave velocity profile. A new theoretical approach for the interpretation of the H/V spectral ratio has been presented by Sanchez-Sesmaet al. In this paper, the fundamental idea behind their theory is presented as it applies to receivers at depth. A smooth H/V(z, f) spectral curve on a broad frequency range is obtained by considering a fine integration step which is in turn time consuming. We show that for practical purposes and in the context of inversion, this can be considerably optimized by using a coarse integration step combined with the smoothing of the corresponding directional energy density (DED) spectrum. Further analysis shows that the obtained H/V(z, f) spectrum computed by the mean of the imaginary part of Green's function method could also be recovered using the reflectivity method for a medium well illuminated by seismic sources. Inversion of synthetic H/V(z, f) spectral curve is performed for a single layer over a half space. The striking results allow to potentially use the new theory as a forward computation of the H/V(z, f) to fully invert the experimental H/V spectral ratio at the corresponding depth for the shear velocity profile (Vs) and additionally the compressional velocity profile (Vp) using receivers both at the surface and in depth. We use seismic ambient noise data in the frequency range of 0.2-50 Hz recorded at two selected sites in Germany where borehole information is also available. The obtained 1-D Vs and Vp profiles are correlated with geological log information. Results from shallow geophysical experiment are also used for comparison.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Agostiny Marrios LontsiORCiDGND, Francisco Jose Sanchez-Sesma, Juan Camillo Molina-Villegas, Matthias OhrnbergerORCiDGND, Frank KrügerGND
DOI:https://doi.org/10.1093/gji/ggv132
ISSN:0956-540X
ISSN:1365-246X
Title of parent work (English):Geophysical journal international
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Interferometry; Inverse theory; Site effects
Volume:202
Issue:1
Number of pages:15
First page:298
Last Page:312
Funding institution:Geotechnologien program of the BMBF/DFG [03G0745A]; Graduiertenkollegs GRK 1364; Abschluss-Promotionsstipendiums of the University of Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.