• Treffer 3 von 6
Zurück zur Trefferliste

A simple model of seasonal open ocean convection. Part II: Labrador Sea stability and stochastic forcing

  • Aspects of open ocean deep convection variability are explored with a two-box model. In order to place the model in a region of parameter space relevant to the real ocean, it is fitted to observational data from the Labrador Sea. A systematic fit to OWS Bravo data allows us to determine the model parameters and to locate the position of the Labrador Sea on a stability diagram. The model suggests that the Labrador Sea is in a bistable regime where winter convection can be either ?on? or ?off?, with both these possibilities being stable climate states. When shifting the surface buoyancy forcing slightly to warmer or fresher conditions, the only steady solution is one without winter convection. We then introduce short-term variability by adding a noise term to the surface temperature forcing, turning the box model into a stochastic climate model. The surface forcing anomalies generated in this way induce jumps between the two model states. These state transitions occur on the interannual to decadal timescale. Changing the average surfaceAspects of open ocean deep convection variability are explored with a two-box model. In order to place the model in a region of parameter space relevant to the real ocean, it is fitted to observational data from the Labrador Sea. A systematic fit to OWS Bravo data allows us to determine the model parameters and to locate the position of the Labrador Sea on a stability diagram. The model suggests that the Labrador Sea is in a bistable regime where winter convection can be either ?on? or ?off?, with both these possibilities being stable climate states. When shifting the surface buoyancy forcing slightly to warmer or fresher conditions, the only steady solution is one without winter convection. We then introduce short-term variability by adding a noise term to the surface temperature forcing, turning the box model into a stochastic climate model. The surface forcing anomalies generated in this way induce jumps between the two model states. These state transitions occur on the interannual to decadal timescale. Changing the average surface forcing towards more buoyant conditions lowers the frequency of convection. However, convection becomes more frequent with stronger variability in the surface forcing. As part of the natural variability, there is a non-negligible probability for decadal interruptions of convection. The results highlight the role of surface forcing variability for the persistence of convection in the ocean.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Till Kuhlbrodt, Sven Holger Titz, Ulrike FeudelORCiDGND, Stefan RahmstorfORCiDGND
ISSN:1616-7341
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2001
Erscheinungsjahr:2001
Datum der Freischaltung:24.03.2017
Quelle:Ocean dynamics : theoretical computational and observational oceanography. - ISSN 1616-7341. - ISSN 1616-7228. - 52 (2001), 1, S. 36 - 49
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.