• search hit 1 of 6
Back to Result List

Probing the core-mantle boundary beneath Europe and Western Eurasia: A detailed study using PcP

  • We use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Grafenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5% and -15%, respectively, with a density increase of +15%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10% in V-P and -20% in Vs cannot be excluded. In general, the whole VolgaWe use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Grafenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5% and -15%, respectively, with a density increase of +15%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10% in V-P and -20% in Vs cannot be excluded. In general, the whole Volga river region shows a complex pattern of PcP amplitudes caused most likely by CMB undulations. Further PcP probes beneath Paris, Kiev and northern Italy indicate likely normal CMB conditions, whereas the samples below Finland and the Hungary-Slovakia border yield strongly amplified PcP signals suggesting strong CMB topography effects. We evaluate the amplitude behaviour of PcP as a function of distance and several ULVZ models using the 1D reflectivity and the 2D Gauss beam method. The influence of the velocity and density perturbations is analysed as well as the anomaly thickness, the dominant period of the source wavelet and interface topographies. Strong variation of the PcP amplitude are obtained as a function of distance and of the impedance contrast. We also consider two types of topographies: undulations atop the CMB in the presence of flat ULVZs and vice versa. Where a broad range of CMB topography dimensions lead to large PcP amplitude variations, only large ULVZ undulations generate significant amplitude scattering. Consequently, this indicates that topography effects of anomalies may mask the true medium parameters as well as the ULVZ thickness. Moreover, there might be a possibility of misinterpreting the precursor as PcP, in particular for thin ULVZs. (C) 2015 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alexandra Gassner, Christine Thomas, Frank KrügerGND, Michael H. WeberORCiDGND
DOI:https://doi.org/10.1016/j.pepi.2015.06.007
ISSN:0031-9201
ISSN:1872-7395
Title of parent work (English):Physics of the earth and planetary interiors
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Amplitude and waveform analysis of PcP; Core-mantle boundary; Earthquakes; Nuclear explosions; Seismology; Ultra-low velocity zones
Volume:246
Number of pages:16
First page:9
Last Page:24
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.