• search hit 2 of 3
Back to Result List

The role of incremental magma chamber growth on ore formation in porphyry copper systems

  • Porphyry copper deposits are formed by fluids released from felsic magmatic intrusions of batholithic dimensions, which are inferred to have been incrementally built up by a series of sill injections. The growth of the magma chamber is primarily controlled by the volumetric injection rate from deeper-seated magma reservoirs, but can further be influenced by hydrothermal convection and fluid release. To quantify the interplay between magma chamber growth, volatile expulsion and hydrothermal fluid flow during ore formation, we used numerical simulations that can model episodic sill injections in concert with multi-phase fluid flow. To build up a magma chamber that constantly maintains a small region of melt within a period of about 50 kyrs, an injection rate of at least 1.3 x 10(-3) km(3)/y is required. Higher magma influxes of 1.9 to 7.6 x 10(-3) km(3)/y are able to form magma chambers with a thickness of 2 to 3 km. Such an intrusion continuously produces magmatic volatiles which can precipitate a copper ore shell in the host rockPorphyry copper deposits are formed by fluids released from felsic magmatic intrusions of batholithic dimensions, which are inferred to have been incrementally built up by a series of sill injections. The growth of the magma chamber is primarily controlled by the volumetric injection rate from deeper-seated magma reservoirs, but can further be influenced by hydrothermal convection and fluid release. To quantify the interplay between magma chamber growth, volatile expulsion and hydrothermal fluid flow during ore formation, we used numerical simulations that can model episodic sill injections in concert with multi-phase fluid flow. To build up a magma chamber that constantly maintains a small region of melt within a period of about 50 kyrs, an injection rate of at least 1.3 x 10(-3) km(3)/y is required. Higher magma influxes of 1.9 to 7.6 x 10(-3) km(3)/y are able to form magma chambers with a thickness of 2 to 3 km. Such an intrusion continuously produces magmatic volatiles which can precipitate a copper ore shell in the host rock about 2 km above the fluid injection location. The steady fluid flux from such an incrementally growing magma chamber maintains a stable magmatic fluid plume, precipitating a copper ore shell in a more confined region and resulting in higher ore grades than the ones generated by an instantaneous emplacement of a voluminous magma chamber. Our simulation results suggest that magma chambers related to porphyry copper deposits form by rapid and episodic injection of magma. Slower magma chamber growth rates more likely result in barren plutonic rocks, although they are geochemically similar to porphyry-hosting plutons. However, these low-frequency sill injection events without a significant magma chamber growth can generate magmatic fluid pulses that can reach the shallow subsurface and are typical for high-sulfidation epithermal deposits.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maximilian KorgesORCiDGND, Philipp WeisORCiDGND, Christine AndersenGND
DOI:https://doi.org/10.1016/j.epsl.2020.116584
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam [u.a.]
Publication type:Article
Language:English
Date of first publication:2020/09/23
Publication year:2020
Release date:2023/06/02
Tag:magma chamber; magmatic sill; numerical modeling; ore deposit; pluton; porphyry copper deposits
Volume:552
Article number:116584
Number of pages:13
Funding institution:German Federal Ministry of Education and Research (BMBF)Federal Ministry; of Education & Research (BMBF) [033R149]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.