• search hit 12 of 17
Back to Result List

Evaluation of medium-range runoff forecasts for a 50 km(2) watershed

  • We generated medium-range forecasts of runoff for a 50 km(2) headwater catchment upstream of a reservoir using numerical weather predictions (NWPs) of the past as input to an operational hydrological model. NWP data originating from different sources were tested. For a period of 8.5 years, we computed daily forecasts with a lead time of +120 h based on an empirically downscaled version of the ECMWF's ensemble prediction system. For the last 3.5 years of the test period, we also tried the deterministic COSMO-EU forecast disseminated by the German Weather Service for lead times of up to +72 h. Common measures of skill indicate superiority of the ensemble runoff forecast over single-value forecasts for longer lead times. However, regardless of which NWP data were being used, the probability of event detection (POD) was found to be generally lower than 50%. In many cases, values in the range of 20-30% were obtained. At the same time, the false alarms ratio (FAR) was often found to be considerably high. The observed uncertainties in theWe generated medium-range forecasts of runoff for a 50 km(2) headwater catchment upstream of a reservoir using numerical weather predictions (NWPs) of the past as input to an operational hydrological model. NWP data originating from different sources were tested. For a period of 8.5 years, we computed daily forecasts with a lead time of +120 h based on an empirically downscaled version of the ECMWF's ensemble prediction system. For the last 3.5 years of the test period, we also tried the deterministic COSMO-EU forecast disseminated by the German Weather Service for lead times of up to +72 h. Common measures of skill indicate superiority of the ensemble runoff forecast over single-value forecasts for longer lead times. However, regardless of which NWP data were being used, the probability of event detection (POD) was found to be generally lower than 50%. In many cases, values in the range of 20-30% were obtained. At the same time, the false alarms ratio (FAR) was often found to be considerably high. The observed uncertainties in the hydrological forecasts were shown to originate from both the insufficient quality of precipitation forecasts as well as deficiencies in hydrological modeling and quantitative precipitation estimation. With respect to the anticipatory control of reservoirs in the studied catchment, the value of the tested runoff forecasts appears to be limited. This is due to the unfavorably low POD/FAR ratio in conjunction with a high cost-loss ratio. However, our results indicate that, in many cases, major runoff events related to snow melt can be successfully predicted as early as 4-5 days in advance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:David Kneis, Gerd Buerger, Axel BronstertORCiDGND
DOI:https://doi.org/10.1016/j.jhydrol.2011.11.005
ISSN:0022-1694
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Forecast verification; Reservoir control; Runoff forecast; Small catchments
Volume:414
Issue:2
Number of pages:13
First page:341
Last Page:353
Funding institution:German Federal Ministry of Education and Research
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.