Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 6 von 121
Zurück zur Trefferliste

X-ray emission spectroscopy of bulk liquid water in "no-man's land"

  • The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1)" peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation thatThe structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1)" peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. (C) 2015 AIP Publishing LLC.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jonas A. Sellberg, Trevor A. McQueen, Hartawan Laksmono, Simon Schreck, Martin BeyeORCiDGND, Daniel P. DePonte, Brian Kennedy, Dennis Nordlund, Raymond G. Sierra, Daniel Schlesinger, Takashi Tokushima, Iurii Zhovtobriukh, Sebastian EckertORCiDGND, Vegard H. Segtnan, Hirohito Ogasawara, Katharina Kubicek, Simone Techert, Uwe Bergmann, Georgi L. Dakovski, William F. Schlotter, Yoshihisa Harada, Michael J. Bogan, Philippe Wernet, Alexander FöhlischORCiDGND, Lars G. M. Pettersson, Anders Nilsson
DOI:https://doi.org/10.1063/1.4905603
ISSN:0021-9606
ISSN:1089-7690
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25637993
Titel des übergeordneten Werks (Englisch):The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr
Verlag:American Institute of Physics
Verlagsort:Melville
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Band:142
Ausgabe:4
Seitenanzahl:9
Fördernde Institution:National Science Foundation (US) [CHE-0809324]; Department of Energy through the SLAC Laboratory Directed Research and Development Program, Office of Basic Energy Sciences (BES) through SSRL; Department of Energy through the SLAC Laboratory Directed Research and Development Program, Office of Basic Energy Sciences (BES) through LCLS; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of BES; Swedish Research Council, Lennanders Stiftelse; Volkswagen Stiftung; Helmholtz Virtual Institute Dynamic Pathways in Multidimensional Landscapes; LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL); University of Hamburg through the BMBF priority program [FSP 301]; Center for Free Electron Laser Science (CFEL)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.