• search hit 4 of 9
Back to Result List

Tomographic P wave velocity and vertical velocity gradient structure across the geothermal site Groß Schoenebeck (NE German Basin) : relationship to lithology, salt tectonics, and thermal regime

  • Seismic wide-angle data were collected along a 40-km-long profile centered at the geothermal research well GrSk 3/90 in the Northeast German Basin. Tomographic inversion of travel time data provided a velocity and a vertical velocity gradient model, indicative of Cenozoic to Pre-Permian sediments. Wide-angle reflections are modeled and interpreted as top Zechstein and top Pre-Permian. Changes in velocity gradients are interpreted as the transition from mechanical to chemical compaction at 2-3 km depth, and localized salt structures are imaged, suggesting a previously unknown salt pillow in the southern part of the seismic profile. The Zechstein salt shows decreased velocities in the adjacent salt pillows compared to the salt lows, which is confirmed by sonic log data. This decrease in velocity could be explained by the mobilization of less dense salt, which moved and formed the salt pillows, whereas the denser salt remained in place at the salt lows. We interpret a narrow subvertical low-velocity zone under the salt pillow at GrSk 3/Seismic wide-angle data were collected along a 40-km-long profile centered at the geothermal research well GrSk 3/90 in the Northeast German Basin. Tomographic inversion of travel time data provided a velocity and a vertical velocity gradient model, indicative of Cenozoic to Pre-Permian sediments. Wide-angle reflections are modeled and interpreted as top Zechstein and top Pre-Permian. Changes in velocity gradients are interpreted as the transition from mechanical to chemical compaction at 2-3 km depth, and localized salt structures are imaged, suggesting a previously unknown salt pillow in the southern part of the seismic profile. The Zechstein salt shows decreased velocities in the adjacent salt pillows compared to the salt lows, which is confirmed by sonic log data. This decrease in velocity could be explained by the mobilization of less dense salt, which moved and formed the salt pillows, whereas the denser salt remained in place at the salt lows. We interpret a narrow subvertical low-velocity zone under the salt pillow at GrSk 3/ 90 as a fault in the deep Permian to Pre-Permian. This WNW-ESE trending fault influenced the location of the salt tectonics and led to the formation of a fault-bounded graben in the Rotliegend sandstones with optimal mechanical conditions for geothermal production. Thermal modeling showed that salt pillows are related to chimney effects, a decrease in temperature, and increasing velocity. The assumed variations in salt lithology, density, and strain must thus be even higher to compensate for the temperature effect.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Klaus BauerORCiDGND, Inga Moeck, Ben Norden, Alexander Schulze, Michael H. WeberORCiDGND, Holger Wirth
URL:http://www.agu.org/journals/jb/
DOI:https://doi.org/10.1029/2009jb006895
ISSN:0148-0227
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of geophysical research : solid earth. - ISSN 0148-0227. - 115 (2010), Art. B08312
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.