• search hit 10 of 13
Back to Result List

Submerged marine terraces identification and an approach for numerical modeling the sequence formation in the Bay of Biscay (Northeastern Iberian Peninsula)

  • Submerged sequences of marine terraces potentially provide crucial information of past sea-level positions. However, the distribution and characteristics of drowned marine terrace sequences are poorly known at a global scale. Using bathymetric data and novel mapping and modeling techniques, we studied a submerged sequence of marine terraces in the Bay of Biscay with the objective to identify the distribution and morphologies of submerged marine terraces and the timing and conditions that allowed their formation and preservation. To accomplish the objectives a high-resolution bathymetry (5 m) was analyzed using Geographic Information Systems and TerraceM(R). The successive submerged terraces were identified using a Surface Classification Model, which linearly combines the slope and the roughness of the surface to extract fossil sea-cliffs and fossil rocky shore platforms. For that purpose, contour and hillshaded maps were also analyzed. Then, shoreline angles, a geomorphic marker located at the intersection between the fossil sea-cliffSubmerged sequences of marine terraces potentially provide crucial information of past sea-level positions. However, the distribution and characteristics of drowned marine terrace sequences are poorly known at a global scale. Using bathymetric data and novel mapping and modeling techniques, we studied a submerged sequence of marine terraces in the Bay of Biscay with the objective to identify the distribution and morphologies of submerged marine terraces and the timing and conditions that allowed their formation and preservation. To accomplish the objectives a high-resolution bathymetry (5 m) was analyzed using Geographic Information Systems and TerraceM(R). The successive submerged terraces were identified using a Surface Classification Model, which linearly combines the slope and the roughness of the surface to extract fossil sea-cliffs and fossil rocky shore platforms. For that purpose, contour and hillshaded maps were also analyzed. Then, shoreline angles, a geomorphic marker located at the intersection between the fossil sea-cliff and platform, were mapped analyzing swath profiles perpendicular to the isobaths. Most of the submerged strandlines are irregularly preserved throughout the continental shelf. In summary, 12 submerged terraces with their shoreline angles between approximately: -13 m (T1), -30 and -32 m (T2), -34 and 41 m (T3), -44 and -47 m (T4), -49 and 53 m (T5), -55 and 58 m (T6), -59 and 62 m (T7), -65 and 67 m (T8), -68 and 70 m (T9), -74 and -77 m (T10), -83 and -86 m (T11) and -89 and 92 m (T12). Nevertheless, the ones showing the best lateral continuity and preservation in the central part of the shelf are T3, T4, T5, T7, T8, and T10. The age of the terraces has been estimated using a landscape evolution model. To simulate the formation and preservation of submerged terraces three different scenarios: (i) 20-0 ka; (ii) 128-0 ka; and (iii) 128-20 ka, were compared. The best scenario for terrace generation was between 128 and 20 Ka, where T3, T5, and T7 could have been formed.show moreshow less

Download full text files

  • zmnr1414.pdfeng
    (16415KB)

    SHA-512b90f5acb05bce038093bbc645fcbb8357fcae5c31efa016d4b6b83f12b5c07b7dd8893814fc7b1d19464504f4618d65c64af88622c8bd87bbb303050a9c7d34f

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Peru Bilbao-Lasa, Julius Jara-MuñozORCiDGND, Kevin Pedoja, Irantzu ÁlvarezORCiD, Arantza AranburuORCiD, Eneko IriarteORCiD, Ibon GalparsoroORCiDGND
URN:urn:nbn:de:kobv:517-opus4-517815
DOI:https://doi.org/10.25932/publishup-51781
ISSN:1866-8372
Title of parent work (German):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1414)
Publication type:Postprint
Language:English
Date of first publication:2020/03/02
Publication year:2020
Publishing institution:Universität Potsdam
Release date:2024/03/14
Tag:Bay of Biscay; TerraceM; digital bathymetric model; marine terrace; numerical modeling; submerged sequence
Issue:47
Number of pages:22
Source:Front. Earth Sci. 8:47. doi: 10.3389/feart.2020.00047
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.