The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 83 of 2873
Back to Result List

Non-Markovian vibrational relaxation dynamics at surfaces

  • Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 x 1) surface, induced by a "bath " of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrodinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent HartreeVibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 x 1) surface, induced by a "bath " of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrodinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with that of the recently developed coherent-state-based multi-Davydov-D2 Ansatz [Zhou et al., J. Chem. Phys. 143, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically "exact " solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation. Published under an exclusive license by AIP Publishing.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Eric Wolfgang FischerORCiDGND, Michael WertherORCiDGND, Foudhil BouaklineORCiDGND, Frank GrossmannORCiD, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1063/5.0092836
ISSN:0021-9606
ISSN:1089-7690
ISSN:1520-9032
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35676124
Title of parent work (English):The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr
Publisher:AIP Publishing
Place of publishing:Melville
Publication type:Article
Language:English
Date of first publication:2022/06/01
Publication year:2022
Release date:2024/01/03
Tag:Adsorption; Chemical dynamics; Coherent states; Density-matrix; Markov processes; Open quantum systems; Surface science; Vibrational states; phonons
Volume:156
Issue:21
Article number:214702
Number of pages:16
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [Sa 547/18-1, GR 1210/8-1]; International Max Planck Research School for Elementary Processes in; Physical Chemistry (IMPRS-EPPC) of the Fritz-Haber-Institute, Berlin;; International Max Planck Research School for Many Particle Systems in; Structured Environments (IMPRS-MPSSE) of the Max-Planck-Institute for the Physics of Complex Systems, Dresden
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.