• search hit 9 of 10
Back to Result List

Subduction, peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite, Tso Moran, western Himalaya

  • Ultrahigh-pressure (UHP), coesite-bearing edogites in the Himalaya have been documented from the Kaghan Valley in Pakistan and the Tso Morani area in northwest India. These complexes are part of the northern edge of the Indian plate that has been subducted to, and metamorphosed at, mantle depths of more than 100 km before being exhumed. Both UHP complexes are located today directly adjacent to the Indus-Tsangpo suture zone and are not separated by non-metamorphosed sequences of Tethyan sediments from the Asian margin. Herein, we present new data for one fresh coesite-bearing eclogite from the Tso Moran massif. Therein, garnets are zoned reflecting their growth during prograde and peak metamorphism and showing a thin retrograde overgrowth. Inclusions can be directly correlated to the compositional zoning and are seen as either relicts of the protolith mineral paragenesis and as "snap shots" of the mineral paragenesis during subduction and under peak conditions. Rare earth element concentrations (REE) were obtained for garnet, mineralUltrahigh-pressure (UHP), coesite-bearing edogites in the Himalaya have been documented from the Kaghan Valley in Pakistan and the Tso Morani area in northwest India. These complexes are part of the northern edge of the Indian plate that has been subducted to, and metamorphosed at, mantle depths of more than 100 km before being exhumed. Both UHP complexes are located today directly adjacent to the Indus-Tsangpo suture zone and are not separated by non-metamorphosed sequences of Tethyan sediments from the Asian margin. Herein, we present new data for one fresh coesite-bearing eclogite from the Tso Moran massif. Therein, garnets are zoned reflecting their growth during prograde and peak metamorphism and showing a thin retrograde overgrowth. Inclusions can be directly correlated to the compositional zoning and are seen as either relicts of the protolith mineral paragenesis and as "snap shots" of the mineral paragenesis during subduction and under peak conditions. Rare earth element concentrations (REE) were obtained for garnet, mineral inclusions in garnet and matrix minerals. The REE pattern in garnet reflects a sequential change in matrix minerals and their proportions due to net transfer reactions during subduction and peak metamorphism. Using conventional geothermobarometry, a peak pressure of ca. 44-48 kbar at 560-760 degrees C followed by an S-shaped exhumation curve has been deduced. Gibbs free energy minimization modelling was used to supplement our analytical findings. (C) 2015 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Franziska Daniela Helena WilkeORCiDGND, Alexander SchmidtGND, Martin Andreas ZiemannGND
DOI:https://doi.org/10.1016/j.lithos2015.06.007
ISSN:0024-4937
ISSN:1872-6143
Title of parent work (English):Lithos : an international journal of mineralogy, petrology, and geochemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Coesite-bearing eclogite; Laser ICP-MS; Rare earth element (REE) distribution; Tso Morari; Ultra-high pressure (UHP)
Volume:231
Number of pages:15
First page:77
Last Page:91
Funding institution:German Science Foundation (DFG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.