• search hit 8 of 18
Back to Result List

North-south polarization of European electricity consumption under future warming

  • There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gasThere is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigationin line with the Paris agreementto unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (similar to 3 to similar to 7% for Portugal and Spain) and significant decreases in northern Europe (similar to-6 to similar to-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Leonie WenzORCiDGND, Anders LevermannORCiDGND, Maximilian AuffhammerORCiDGND
DOI:https://doi.org/10.1073/pnas.1704339114
ISSN:0027-8424
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28847939
Title of parent work (English):Proceedings of the National Academy of Sciences of the United States of America
Publisher:National Acad. of Sciences
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:adaptation; climate change; electricity consumption; peak load
Volume:114
Number of pages:9
First page:E7910
Last Page:E7918
Funding institution:German Academic Exchange Service; European Union Seventh Framework Program FP7 [603864]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.