• search hit 8 of 238
Back to Result List

Arabidopsis cytosolic alpha-glycan phosphorylase, PHS2, is important during carbohydrate imbalanced conditions

  • Arabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for longArabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for long time in darkness at 6 degrees C. We conclude that PHS2 activity is important in the adult stage during low-light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:S. Schopper, P. Muhlenbock, C. Sorensson, L. Hellborg, M. Lenman, S. Widell, Jörg FettkeORCiDGND, Erik Andreasson
DOI:https://doi.org/10.1111/plb.12190
ISSN:1435-8603
ISSN:1438-8677
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/24888726
Title of parent work (English):Plant biology
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Lesion formation; PHS2; low light stress conditions; phosphorylase; senescence; soluble heteroglycans
Volume:17
Issue:1
Number of pages:7
First page:74
Last Page:80
Funding institution:Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.