The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 81
Back to Result List

Large landslides lie low: Excess topography in the Himalaya-Karakoram ranges

  • Mass wasting is an important process for denuding hillslopes and lowering ridge crests in active mountain belts such as the Himalaya-Karakoram ranges (HKR). Such a high-relief landscape is likely to be at its mechanical threshold, maintained by competing rapid rock uplift, river incision, and pervasive slope failure. We introduce excess topography, Z(E), for quantifying potentially unstable rock-mass volumes inclined at angles greater than a specified threshold angle. We find that Z(E) peaks along major fluvial and glacial inner gorges, which is also where the majority of 492 large (>0.1 km(2)) rock-slope failures occur in the Himalaya's largest cluster of documented Pleistocene to Holocene bedrock landslides. Our data reveal that bedrock landslides in the HKR chiefly detached from near or below the median elevation, whereas glaciers and rock glaciers occupy higher-elevation bands almost exclusively. Less than 10% of the area of the HKR is upslope of glaciers, such that possible censoring of evidence of large bedrock landslides aboveMass wasting is an important process for denuding hillslopes and lowering ridge crests in active mountain belts such as the Himalaya-Karakoram ranges (HKR). Such a high-relief landscape is likely to be at its mechanical threshold, maintained by competing rapid rock uplift, river incision, and pervasive slope failure. We introduce excess topography, Z(E), for quantifying potentially unstable rock-mass volumes inclined at angles greater than a specified threshold angle. We find that Z(E) peaks along major fluvial and glacial inner gorges, which is also where the majority of 492 large (>0.1 km(2)) rock-slope failures occur in the Himalaya's largest cluster of documented Pleistocene to Holocene bedrock landslides. Our data reveal that bedrock landslides in the HKR chiefly detached from near or below the median elevation, whereas glaciers and rock glaciers occupy higher-elevation bands almost exclusively. Less than 10% of the area of the HKR is upslope of glaciers, such that possible censoring of evidence of large bedrock landslides above the permanent snow line barely affects this finding. Bedrock landslides appear to preferentially undermine topographic relief in response to fluvial and glacial incision along inner gorges, unless more frequent and smaller undetected failures, or rigorous (peri-)glacial erosion, compensate for this role at higher elevation. Either way, the distinct patterns of excess topography and large bedrock landsliding in the HKR juxtapose two stacked domains of landslide and (peri-)glacial erosion that may respond to different time scales of perturbation. Our findings call for more detailed analysis of vertical erosional domains and their geomorphic coupling in active mountain belts.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jan Henrik Blöthe, Oliver KorupORCiDGND, Wolfgang SchwanghartORCiDGND
DOI:https://doi.org/10.1130/G36527.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:43
Issue:6
Number of pages:4
First page:523
Last Page:526
Funding institution:German Research Foundation [KO3937/2]; Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.