• search hit 6 of 28
Back to Result List

Polymerization of proteins into amyloid protofibrils shares common critical oligomeric states but differs in the mechanisms of their formation

  • Amyloid protofibril formation of phosphoglycerate kinase (PGK) and Syrian hamster prion protein (SHaPrP(90- 232)) were investigated by static and dynamic light scattering, size exclusion chromatography and electron microscopy. Changes in secondary structure were monitored by Fourier transform infrared spectroscopy and by circular dichroism. Protofibril formation of the two proteins is found to be a two-stage process. At the beginning, an ensemble of critical oligomers is built lip. These critical oligomeric states possess a predominant beta-sheet structure and do not interact considerably with monomers. Initial oligomerization and transition to beta-sheet structure are coupled events differing in their details for both proteins. Intermediate oligomeric states (dimers, trimers, etc.) are populated in case of PGK, whereas SHaPrP(90-232) behaves according to oil apparent two-state reaction between monomers and octamers rich in beta- structure with a reaction order varying between 2 and 4. All oligomers coalesce to PGK protofibrils in theAmyloid protofibril formation of phosphoglycerate kinase (PGK) and Syrian hamster prion protein (SHaPrP(90- 232)) were investigated by static and dynamic light scattering, size exclusion chromatography and electron microscopy. Changes in secondary structure were monitored by Fourier transform infrared spectroscopy and by circular dichroism. Protofibril formation of the two proteins is found to be a two-stage process. At the beginning, an ensemble of critical oligomers is built lip. These critical oligomeric states possess a predominant beta-sheet structure and do not interact considerably with monomers. Initial oligomerization and transition to beta-sheet structure are coupled events differing in their details for both proteins. Intermediate oligomeric states (dimers, trimers, etc.) are populated in case of PGK, whereas SHaPrP(90-232) behaves according to oil apparent two-state reaction between monomers and octamers rich in beta- structure with a reaction order varying between 2 and 4. All oligomers coalesce to PGK protofibrils in the second stage, while SHaPrP(90-232) protofibrils are only formed by a subpopulation. The rates of both growth stages can be tuned in case of PGK by different salts preserving the underlying generalized diffusion-collision mechanism. The different kinetics of the early misfolding and oligomerization events of the two proteins argue against a common mechanism of protofibril formation. A classification scheme for misassembly, mechanisms of proteins based on energy landscapes is presented. It includes scenarios of downhill polymerization to which protofibril formation of PGK and SHaPrP(90-232) belongshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas Johannes Modler, H. Fabian, F. Sokolowski, G. Lutsch, Klaus Gast, Gregor Damaschun
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Amyloid : Journal of protein folding disorders. - 11 (2004), 4, S. 215 - 231
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.