• search hit 35 of 2352
Back to Result List

First high-pressure synthesis of rossmanitic tourmaline and evidence for the incorporation of Li at the X site

  • Lithium is an important component of some tourmalines, especially in chemically evolved granites and pegmatites. All attempts at synthesizing Li-rich tourmaline have so far been unsuccessful. Here we describe the first synthesis of rossmanitic tourmaline at 4 GPa and 700 degrees C in the system Li2OAl2O3SiO2B2O3H2O (LASBH) from seed-free solid starting materials consisting of a homogenous mixture of Li2O, gamma-Al2O3, quartz and H3BO3. The solid run products after 12-day run duration comprise rossmanitic tourmaline (68 wt%), dumortierite (28 wt%) and traces of spodumene (3 wt%) and coesite (1 wt%). Tourmaline forms idiomorphic, large prismatic crystals (30 X 100 mu m), which are inclusion free and chemically unzoned. The refined cell dimensions of the tourmaline are: a = 15.7396(9) angstrom, c = 7.0575(5) angstrom, V = 1514.1(2) angstrom 3. Conventionally, the Li+ ion is assumed to exclusively occupy the octahedral Y site in the tourmaline structure to a maximum of 2 Li per formula unit (pfu). However, the chemical composition of ourLithium is an important component of some tourmalines, especially in chemically evolved granites and pegmatites. All attempts at synthesizing Li-rich tourmaline have so far been unsuccessful. Here we describe the first synthesis of rossmanitic tourmaline at 4 GPa and 700 degrees C in the system Li2OAl2O3SiO2B2O3H2O (LASBH) from seed-free solid starting materials consisting of a homogenous mixture of Li2O, gamma-Al2O3, quartz and H3BO3. The solid run products after 12-day run duration comprise rossmanitic tourmaline (68 wt%), dumortierite (28 wt%) and traces of spodumene (3 wt%) and coesite (1 wt%). Tourmaline forms idiomorphic, large prismatic crystals (30 X 100 mu m), which are inclusion free and chemically unzoned. The refined cell dimensions of the tourmaline are: a = 15.7396(9) angstrom, c = 7.0575(5) angstrom, V = 1514.1(2) angstrom 3. Conventionally, the Li+ ion is assumed to exclusively occupy the octahedral Y site in the tourmaline structure to a maximum of 2 Li per formula unit (pfu). However, the chemical composition of our synthetic tourmaline determined by electron microprobe and secondary ion mass spectroscopy results in the formula: (X)(square Li-0.67(11)(0.33(11)))(Y)(Al2.53(10)Li0.47(10))(Z)(Al-6)T(Si5.42(15)B0.58(15))O-18(B)(BO3)(3)(V+W)[(OH)(2.40(3))O-1.60(3)], wherein a significant amount of Li occupies the X site for charge balance requirements. Reliable assignment of the OH-stretching vibrations in a polarized single-crystal Raman spectrum such as a single-crystal XRD structure refinement, confirms the incorporation of Li at the X site [0.24(9) and 0.15(5) Li-X pfu, respectively]. The SREF data show that the LiO1 distances are shortened significantly in order to compensate for the smaller ionic radius of Li+ compared to Na+, K+ or Ca2+ at the X site, i.e., Li is closer to the Si6O18 ring and to a sevenfold coordination with oxygen.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Martin KutzschbachORCiDGND, Bernd WunderGND, Marija KrstulovicORCiDGND, Andreas Ertl, Robert B. TrumbullORCiD, Alexander Rocholl, Gerald Giester
DOI:https://doi.org/10.1007/s00269-016-0863-0
ISSN:0342-1791
ISSN:1432-2021
Title of parent work (English):Physics and chemistry of minerals / in cooperation with the International Mineralogical Association (IMA)
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2016/12/19
Publication year:2016
Release date:2022/06/07
Tag:Crystal chemistry; High-pressure synthesis; Li isotope fractionation; Rossmanite; SIMS; SREF; Tourmaline; X site occupancy
Volume:44
Number of pages:11
First page:353
Last Page:363
Funding institution:Austrian Science Fund (FWF) [P-26903-N19]; DFG [FR 557/31-1, HE 2015/16-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.