• Treffer 35 von 44
Zurück zur Trefferliste

Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision

  • Background Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fastBackground Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient) were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before. Conclusions Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interestzeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Niklas HartungORCiD, Cecilia T. -K. Huynh, Caroline Gaudy-Marqueste, Antonin Flavian, Nausicaa Malissen, Marie-Aleth Richard-Lallemand, Florence Hubert, Jean-Jacques Grob
DOI:https://doi.org/10.1371/journal.pone.0176080
ISSN:1932-6203
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28472075
Titel des übergeordneten Werks (Englisch):PLoS one
Verlag:PLoS
Verlagsort:San Fransisco
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Band:12
Seitenanzahl:11
Fördernde Institution:F. Hoffmann-La Roche Pharmaceutical
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.