• search hit 4 of 173
Back to Result List

Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode

  • HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. TheHighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hongtao Yu, Ting Quan, Shilin MeiGND, Zdravko KochovskiORCiD, Wei HuangORCiD, Hong Meng, Yan LuORCiDGND
DOI:https://doi.org/10.1007/s40820-019-0269-x
ISSN:2311-6706
ISSN:2150-5551
Title of parent work (English):Nano-Micro Letters
Subtitle (English):Efficient, Scalable, and Recyclable
Publisher:Shanghai JIAO TONG univ press
Place of publishing:Shanghai
Publication type:Article
Language:English
Date of first publication:2019/05/16
Publication year:2019
Release date:2021/02/08
Tag:Bifunctional catalysts; Electrodeposition; Large-size; Ni nanodots; Water splitting
Volume:11
Issue:41
Number of pages:13
Funding institution:Postdoctoral Science Foundation of ChinaChina Postdoctoral Science Foundation [2017M610324]; NSFCNational Natural Science Foundation of China [21704040]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.