• search hit 26 of 66
Back to Result List

On-axis spectroscopy of the z=0.144 radio-loud quasar HE 1434-1600 : an elliptical host with a highly ionized ISM

  • VLT on-axis optical spectroscopy of the z = 0.144 radio-loud quasar HE 1434-1600 is presented. The spatially resolved spectra of the host galaxy are deconvolved and separated from those of the central quasar in order to study the dynamics of the stars and gas as well as the physical conditions of the ISM. We find that the host of HE 1434-1600 is an elliptical galaxy that resides in a group of at least 5 member galaxies, and that most likely experienced a recent collision with its nearest companion. Compared with other quasar host galaxies, HE 1434-1600 has a highly ionized ISM. The ionization state corresponds to that of typical Seyferts, but the ionized regions are not distributed in a homogeneous way around the QSO, and are located preferentially several kiloparsecs away from it. While the stellar absorption lines do not show any significant velocity field, the gas emission lines do. The observed gas velocity field is hard to reconcile with dynamical models involving rotating disk. modified Hubble laws or power laws, that allVLT on-axis optical spectroscopy of the z = 0.144 radio-loud quasar HE 1434-1600 is presented. The spatially resolved spectra of the host galaxy are deconvolved and separated from those of the central quasar in order to study the dynamics of the stars and gas as well as the physical conditions of the ISM. We find that the host of HE 1434-1600 is an elliptical galaxy that resides in a group of at least 5 member galaxies, and that most likely experienced a recent collision with its nearest companion. Compared with other quasar host galaxies, HE 1434-1600 has a highly ionized ISM. The ionization state corresponds to that of typical Seyferts, but the ionized regions are not distributed in a homogeneous way around the QSO, and are located preferentially several kiloparsecs away from it. While the stellar absorption lines do not show any significant velocity field, the gas emission lines do. The observed gas velocity field is hard to reconcile with dynamical models involving rotating disk. modified Hubble laws or power laws, that all require extreme central masses (M > 10(9) M-circle dot) to provide only poor fit to the data. Power law models, which best fit the data, provide a total mass of M(<10 kpc) = 9.2 x 10(10) M-&ODOT;. We conclude that the recent interaction between HE 1434-1600 and its closest companion has strongly affected the gas velocity and ionization state, from the center of the galaxy to its most external partsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:G. Letawe, F. Courbin, P. Magain, M. Hilker, P. Jablonka, Knud Jahnke, Lutz WisotzkiORCiDGND
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Astronomy and Astrophysics. - 424 (2004), 2, S. 455 - 464
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.