• search hit 3 of 4
Back to Result List

Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code

  • Simulations of strong ground motion within the Santiago de Chile Metropolitan area were carried out by means of 3-D deterministic wave propagation tool based on the spectral element method. The simulated events take into account the pronounced interface between the low-velocity sedimentary basin and the bedrock as well as topography of the area. To verify our model we simulated a regional earthquake recorded by a dense network installed in the city of Santiago for recording aftershock activity after the 2010 February 27 Maule main shock. The results proof the alluvial basin amplification effects and show a strong dependence of spectral amplification in the basin on the local site conditions. Moreover, we studied the seismic response due to a hypothetical M(w) = 6.0 event occurring along the active San Ramon Fault, which is crossing the eastern edge of the city. The scenario earthquakes exhibit that an unfavourable interaction between fault rupture, radiation mechanism and complex geological and topographic conditions in the near-fieldSimulations of strong ground motion within the Santiago de Chile Metropolitan area were carried out by means of 3-D deterministic wave propagation tool based on the spectral element method. The simulated events take into account the pronounced interface between the low-velocity sedimentary basin and the bedrock as well as topography of the area. To verify our model we simulated a regional earthquake recorded by a dense network installed in the city of Santiago for recording aftershock activity after the 2010 February 27 Maule main shock. The results proof the alluvial basin amplification effects and show a strong dependence of spectral amplification in the basin on the local site conditions. Moreover, we studied the seismic response due to a hypothetical M(w) = 6.0 event occurring along the active San Ramon Fault, which is crossing the eastern edge of the city. The scenario earthquakes exhibit that an unfavourable interaction between fault rupture, radiation mechanism and complex geological and topographic conditions in the near-field region may give rise to large values of peak ground velocity in the basin. Finally, 3-D numerical predictions of ground motion are compared with the one computed according to ground motion prediction equations selected among the next generation attenuation relationships, in terms of ground motion peak values and spectral acceleration. The comparison underlines that the 3-D scenario simulations predict a significantly higher level of ground motion in the Santiago basin, especially over deep alluvial deposits. Moreover, also the location of the rupture nucleation largely influences the observed shaking pattern.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marco PilzORCiD, Stefano ParolaiORCiD, Marco Stupazzini, Roberto Paolucci, Jochen Zschau
DOI:https://doi.org/10.1111/j.1365-246X.2011.05183.x
ISSN:0956-540X
Title of parent work (English):Geophysical journal international
Publisher:Wiley-Blackwell
Place of publishing:Malden
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Earthquake ground motions; Site effects; South America; Wave propagation
Volume:187
Issue:2
Number of pages:17
First page:929
Last Page:945
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.