• Treffer 3 von 3
Zurück zur Trefferliste

Towards DIB mapping in galaxies beyond 100 Mpc A radial profile of the lambda 5780.5 diffuse interstellar band in AM1353-272 B

  • Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims. In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods. We used MUSE commissioning data for AM1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results. We derived decreasing radial profiles for the equivalent width of the lambda 5780.5 DIB both in the receding and approaching side ofContext. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims. In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods. We used MUSE commissioning data for AM1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results. We derived decreasing radial profiles for the equivalent width of the lambda 5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of similar to 4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Ha/H beta line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions. It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ana Monreal-Ibero, Peter Michael WeilbacherORCiDGND, Martin WendtORCiDGND, Fernando Selman, Rosine Lallement, Jarle BrinchmannORCiD, Sebastian Kamann, Christer Sandin
DOI:https://doi.org/10.1051/0004-6361/201525854
ISSN:0004-6361
ISSN:1432-0746
Titel des übergeordneten Werks (Englisch):Astronomy and astrophysics : an international weekly journal
Verlag:EDP Sciences
Verlagsort:Les Ulis
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:ISM: lines and bands; dust, extinction; galaxies: ISM; galaxies: individual: AM1353-272 B
Band:576
Seitenanzahl:4
Fördernde Institution:Agence Nationale de la Recherche through the STILISM project [ANR-12-BS05-0016-02]; BMBF Verbundforschung (project MUSE-AO) [05A14BAC, 05A14MGA]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.