• search hit 19 of 151
Back to Result List

Temperature-induced responses of a permanent-pond and a temporary-pond cyclopoid copepod : a link to habitat predictability?

  • Temporary-pond species can be expected to use environmental cues to predict the onset of adverse conditions, while permanent-pond species may be insensitive to such cues. Temperature is such a potential cue in temporary waterbodies, as if fluctuates more widely with decreasing pond size than in deeper permanent ponds. We compared the temperature-induced response of a permanent-pond and a temporary-pond cyclopoid copepod focusing on juvenile development duration, diapause induction and survival during diapause. Nonlinear regression analysis suggested a stronger effect of temperature on the duration of juvenile development in the temporary-pond species. This species also showed a higher and temperature-dependent variation in development duration (highest coefficient of variation 26%) compared with the permanent species, for which variation was lower and similar at all temperatures (maximal coefficient of variation 6%). Temperature significantly influenced the induction of diapause in the temporary-pond species, where the percentage ofTemporary-pond species can be expected to use environmental cues to predict the onset of adverse conditions, while permanent-pond species may be insensitive to such cues. Temperature is such a potential cue in temporary waterbodies, as if fluctuates more widely with decreasing pond size than in deeper permanent ponds. We compared the temperature-induced response of a permanent-pond and a temporary-pond cyclopoid copepod focusing on juvenile development duration, diapause induction and survival during diapause. Nonlinear regression analysis suggested a stronger effect of temperature on the duration of juvenile development in the temporary-pond species. This species also showed a higher and temperature-dependent variation in development duration (highest coefficient of variation 26%) compared with the permanent species, for which variation was lower and similar at all temperatures (maximal coefficient of variation 6%). Temperature significantly influenced the induction of diapause in the temporary-pond species, where the percentage of individuals entering diapause increased from 0% at 5degreesC and 10degreesC to 63% at 15degreesC and 91% at 20degreesC. In the permanent-pond species, diapause induction was independent of temperature and was induced in 100% of experimental specimens. This suggests an obligatory diapause in the permanent-pond species, a type of dormancy that has not been described previously for cyclopoid copepods. Survival during diapause in both species was higher when the diapausing copepodid stage was reached at lower temperatures. At higher temperatures, the temporary-pond species survived longer than the permanent-pond species. These results suggest different temperature optima of the two species. The strategy displayed by the permanent-pond species might be selected for in more stable habitats and may preclude the colonization of temporary ponds. Higher flexibility in life-history traits and the use of temperature as an environmental cue in the temporary-pond species could be favoured in unpredictable habitatsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:D. Frisch, B. Santer
ISSN:1522-0613
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Evolutionary Ecology Research. - ISSN 1522-0613. - 6 (2004), 4, S. 541 - 553
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.