• search hit 16 of 71
Back to Result List

JENKINS-SERRIN-TYPE RESULTS FOR THE JANG EQUATION

  • Let (M, g, k) be an initial data set for the Einstein equations of general relativity. We show that a canonical solution of the Jang equation exists in the complement of the union of all weakly future outer trapped regions in the initial data set with respect to a given end, provided that this complement contains no weakly past outer trapped regions. The graph of this solution relates the area of the horizon to the global geometry of the initial data set in a non-trivial way. We prove the existence of a Scherk-type solution of the Jang equation outside the union of all weakly future or past outer trapped regions in the initial data set. This result is a natural exterior analogue for the Jang equation of the classical Jenkins Serrin theory. We extend and complement existence theorems [19, 20, 40, 29, 18, 31, 11] for Scherk-type constant mean curvature graphs over polygonal domains in (M, g), where (M, g) is a complete Riemannian surface. We can dispense with the a priori assumptions that a sub solution exists and that (M, g) hasLet (M, g, k) be an initial data set for the Einstein equations of general relativity. We show that a canonical solution of the Jang equation exists in the complement of the union of all weakly future outer trapped regions in the initial data set with respect to a given end, provided that this complement contains no weakly past outer trapped regions. The graph of this solution relates the area of the horizon to the global geometry of the initial data set in a non-trivial way. We prove the existence of a Scherk-type solution of the Jang equation outside the union of all weakly future or past outer trapped regions in the initial data set. This result is a natural exterior analogue for the Jang equation of the classical Jenkins Serrin theory. We extend and complement existence theorems [19, 20, 40, 29, 18, 31, 11] for Scherk-type constant mean curvature graphs over polygonal domains in (M, g), where (M, g) is a complete Riemannian surface. We can dispense with the a priori assumptions that a sub solution exists and that (M, g) has particular symmetries. Also, our method generalizes to higher dimensions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michael Eichmair, Jan Metzger
DOI:https://doi.org/10.4310/jdg/1453910454
ISSN:0022-040X
ISSN:1945-743X
Title of parent work (English):Journal of differential geometry
Publisher:International Press of Boston
Place of publishing:Somerville
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:102
Number of pages:36
First page:207
Last Page:242
Funding institution:Clay Liftoff Fellowship; NSF [DMS-0906038]; SNF [200021-140467]; DFG [ME3816/1-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.