• search hit 14 of 66
Back to Result List

Sekaninaite from the Satzung granite (Erzgebirge, Germany) : magmatic or xenolithic?

  • In the earliest emplaced granite subintrusion of the multiphase peraluminous Satzung pluton, Erzgebirge, Germany, a mineral aggregate was observed consisting of sekaninaite (X-Fe = 0.74-0.94), Zn-rich hercynite (X-Zn = 0.03- 0.11), tri- and dioctahedral layer silicates of different composition and color, and minor quartz. Geological, textural, and compositional criteria argue that the sekaninaite, hercynite, quartz, and the brown biotite are not primary or secondary granite minerals, but are of metamorphic origin representing a xenolith uptaken from the granite melt near its level of emplacement. The metamorphic origin is supported by the occurrence of this mineral assemblage in metamorphic rocks exposed locally in the Erzgebirge basement. Reaction of the polymineralic metamorphic aggregate with the surrounding melt and subsequent interaction with alkali-, F- and LILE-rich residual fluids account for the widespread decomposition of the sekaninaite and formation of several layer silicates including green biotite, muscovite,In the earliest emplaced granite subintrusion of the multiphase peraluminous Satzung pluton, Erzgebirge, Germany, a mineral aggregate was observed consisting of sekaninaite (X-Fe = 0.74-0.94), Zn-rich hercynite (X-Zn = 0.03- 0.11), tri- and dioctahedral layer silicates of different composition and color, and minor quartz. Geological, textural, and compositional criteria argue that the sekaninaite, hercynite, quartz, and the brown biotite are not primary or secondary granite minerals, but are of metamorphic origin representing a xenolith uptaken from the granite melt near its level of emplacement. The metamorphic origin is supported by the occurrence of this mineral assemblage in metamorphic rocks exposed locally in the Erzgebirge basement. Reaction of the polymineralic metamorphic aggregate with the surrounding melt and subsequent interaction with alkali-, F- and LILE-rich residual fluids account for the widespread decomposition of the sekaninaite and formation of several layer silicates including green biotite, muscovite, berthierine/Fe chlorite, and sericite. The observed enrichment of the relic sekaninaite and its replacement products in elements such as Na, Li, Be, Rb, Cs, and F is result of interaction of the metamorphic fragment with the surrounding melt/fluid, in accordance with the evolved nature of the Satzung magmatic-hydrothermal systemshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bärbel Gottesmann, Hans-Jürgen FörsterGND
ISSN:0935-1221
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:European Journal of Mineralogy. - ISSN 0935-1221. - 16 (2004), 3, S. 483 - 491
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.