• Treffer 2 von 49
Zurück zur Trefferliste

Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia

  • The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the centralThe final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P(MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-Pamphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 GaMP-medium-T(MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550 degrees C at 6-7 kbar (garnet cores) to 620-650 degrees C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 GaLP-high-T(HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant.P-Tconditions ranged from 600 to 680 degrees C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post-S2, at 730-770 degrees C and 6-8 kbar, and at 750-790 degrees C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest ac. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-Pand medium-Tconditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-Pand high-Tphase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Silvia VolanteORCiDGND, Amaury PourteauGND, William J. Collins, Eleanore BlereauORCiDGND, Zheng-Xiang LiORCiDGND, Matthijs Arjen SmitGND, Noreen EvansORCiDGND, Adam R. Nordsvan, Chris J. Spencer, Brad J. McDonald, Jiangyu Li, Christina GünterGND
DOI:https://doi.org/10.1111/jmg.12532
ISSN:0263-4929
ISSN:1525-1314
Titel des übergeordneten Werks (Englisch):Journal of metamorphic geology
Verlag:Wiley-Blackwell
Verlagsort:Oxford [u.a.]
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:30.07.2020
Erscheinungsjahr:2020
Datum der Freischaltung:12.01.2024
Freies Schlagwort / Tag:Lu-Hf in garnet; P-T-d-tpaths; continental collision; petrostructural analysis; supercontinent Nuna
Band:38
Ausgabe:6
Seitenanzahl:35
Erste Seite:593
Letzte Seite:627
Fördernde Institution:Australian Research Council Australian Research Council [FL150100133]; Natural Sciences and Engineering Research Council of Canada Natural; Sciences and Engineering Research Council of Canada (NSERC)CGIAR; [RGPIN-2015, 04080, LE150100013]; ARC LIEF Australian Research Council; [LE150100013]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.