• Treffer 2 von 2
Zurück zur Trefferliste

Effects of inbreeding, outbreeding, and supplemental pollen on the reproduction of a hummingbird-pollinated clonal amazonian herb

  • Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar-rich 1-d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross-proximity, and patchy distribution on the reproduction of the hummingbird-pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self-pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with severalUnderstory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar-rich 1-d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross-proximity, and patchy distribution on the reproduction of the hummingbird-pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self-pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen-limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Matthias Schleuning, Mathias Templin, Vicky Huaman, Giovana P. Vadillo, Thomas BeckerGND, Walter DurkaORCiDGND, Markus Fischer, Diethart Matthies
DOI:https://doi.org/10.1111/j.1744-7429.2010.00663.x
ISSN:0006-3606
Titel des übergeordneten Werks (Englisch):Biotropica : a publication of the Association for Tropical Biology
Verlag:Wiley-Blackwell
Verlagsort:Malden
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Heliconiaceae; Peru; clonality; geitonogamy; hummingbird pollination; pollen limitation; pollination experiment; rain forest understory
Band:43
Ausgabe:2
Seitenanzahl:9
Erste Seite:183
Letzte Seite:191
Fördernde Institution:German Academic Exchange Service (DAAD); German National Academic Foundation
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.