• search hit 2 of 3
Back to Result List

Gnosis - the first instrument to use fiber bragg gratings for OH suppression

  • The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes "OH suppression fibers" consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 mu m. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph toThe near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes "OH suppression fibers" consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 mu m. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (approximate to 60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibers paired with a fiber-fed spectrograph will at least provide a real benefit at low resolving powers.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christopher Q. Trinh, Simon C. Ellis, Joss Bland-Hawthorn, Jon S. Lawrence, Anthony J. Horton, Sergio G. Leon-Saval, Keith Shortridge, Julia Bryant, Scott Case, Matthew Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd LöhmannsröbenORCiDGND, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O'Byrne, Stan Miziarski, Martin M. RothORCiDGND, Brian Schmidt, Christopher G. Tinney, Jessica Zheng
DOI:https://doi.org/10.1088/0004-6256/145/2/51
ISSN:0004-6256
Title of parent work (English):The astronomical journal
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:atmospheric effects; infrared: diffuse background; instrumentation: miscellaneous
Volume:145
Issue:2
Number of pages:13
Funding institution:ARC LIEF [LE100100164]; National Science Foundation [DGE-1035963]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.