• search hit 2 of 7
Back to Result List

Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts

Integrierte Bioraffinerie in kontinuierlichen Fließsystemen unter Verwendung nachhaltiger heterogener Katalysatoren

  • The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologiesThe negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol%, 62 mol%, and 100 mol% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual–column integrated process for isosorbide production from glucose (yield 83 mol%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.show moreshow less
  • Die negativen Auswirkungen von Rohöl auf die Umwelt haben zu einem notwendigen Übergang zu alternativen, erneuerbaren und nachhaltigen Ressourcen geführt. In dieser Hinsicht ist lignozellulosehaltige Biomasse (LCB) eine vielversprechende erneuerbare und nachhaltige Alternative zu Erdöl für die Herstellung von Feinchemikalien und Kraftstoffen in einem sogenannten Bioraffinerie-Prozess. LCB setzt sich aus Polysacchariden (Cellulose und Hemicellulose) sowie Aromaten (Lignin) zusammen. Die Entwicklung einer nachhaltigen und wirtschaftlich vorteilhaften Bioraffinerie hängt von der vollständigen und effizienten Verwertung aller Komponenten ab. Zu diesem Zweck ist die Entwicklung hochstabiler und effizienter Katalysatoren entscheidend für den Fortschritt in Richtung Bioraffinerie-Wirtschaftlichkeit. Darüber hinaus ist eine moderne und integrierte Bioraffinerie auf ein Prozess- und Reaktordesign angewiesen, das auf effizientere und kostengünstigere Methoden abzielt, die den Abfall minimieren. In diesem Zusammenhang hat die Verwendung vonDie negativen Auswirkungen von Rohöl auf die Umwelt haben zu einem notwendigen Übergang zu alternativen, erneuerbaren und nachhaltigen Ressourcen geführt. In dieser Hinsicht ist lignozellulosehaltige Biomasse (LCB) eine vielversprechende erneuerbare und nachhaltige Alternative zu Erdöl für die Herstellung von Feinchemikalien und Kraftstoffen in einem sogenannten Bioraffinerie-Prozess. LCB setzt sich aus Polysacchariden (Cellulose und Hemicellulose) sowie Aromaten (Lignin) zusammen. Die Entwicklung einer nachhaltigen und wirtschaftlich vorteilhaften Bioraffinerie hängt von der vollständigen und effizienten Verwertung aller Komponenten ab. Zu diesem Zweck ist die Entwicklung hochstabiler und effizienter Katalysatoren entscheidend für den Fortschritt in Richtung Bioraffinerie-Wirtschaftlichkeit. Darüber hinaus ist eine moderne und integrierte Bioraffinerie auf ein Prozess- und Reaktordesign angewiesen, das auf effizientere und kostengünstigere Methoden abzielt, die den Abfall minimieren. In diesem Zusammenhang hat die Verwendung von kontinuierlichen Durchflusssystemen das Potenzial, sichere, nachhaltige und innovative Transformationen mit einfacher Prozessintegration und Skalierbarkeit für Bioraffineriesysteme zu bieten. Diese Arbeit befasst sich mit drei wesentlichen Herausforderungen für die zukünftige Bioraffinerie: Katalysatorsynthese, Valorisierung von Abfallstoffen und Einsatz von kontinuierlicher Durchflusstechnik. Zuerst wird ein kostengünstiger, skalierbarer und nachhaltiger Ansatz für die Synthese eines effizienten und stabilen 35-Gew.-%-Ni-Katalysators auf einem hochporösen, stickstoffdotierten Kohlenstoffträger (35Ni/NDC) in Pelletform vorgestellt. Zunächst wurde die Leistung dieses Katalysators für die Hydrierung von LCB-abgeleiteten Verbindungen wie Glucose, Xylose und Vanillin in kontinuierlichen Durchflusssystemen in wässriger Phase bewertet. Der 35Ni/NDC-Katalysator zeigte hohe katalytische Leistungen in drei getesteten Hydrierungsreaktionen, d. h. Sorbit, Xylit und 2-Methoxy-4-methylphenol mit Ausbeuten von 82 mol%, 62 mol% bzw. 100 mol%. Darüber hinaus zeigte der 35Ni/NDC-Katalysator eine bemerkenswerte Stabilität über eine lange Zeit im kontinuierlichen Fluss (40 h). Auβerrdem wurde der 35Ni/NDC-Katalysator mit handelsüblichem Beta-Zeolith in einem integrierten Zweisäulenprozess für die Isosorbid-Produktion aus Glukose kombiniert (Ausbeute 83 mol%). Schließlich wurde 35Ni/NDC für die Valorisierung von industriellen Abfallprodukten, nämlich Natriumlignosulfonat (LS) und Buchenholzsägemehl (BWS) in kontinuierlichen Durchflusssystemen eingesetzt. Die Depolymerisation von LS wurde durch eine Kombination von solvothermischer Fragmentierung von Wasser/Alkohol-Gemischen (d.h. MeOH/Wasser und Ethanol/Wasser) mit katalytischer Hydrogenolyse/Hydrierung (SHF) durchgeführt. Es wurde festgestellt, dass die Depolymerisation thermisch in Abwesenheit des Katalysators mit einem abstimmbaren Molekulargewicht in Abhängigkeit von der Temperatur erfolgt. Außerdem wurde mit der SHF eine optimierte kumulative Monomerausbeute von 42 mg gLS-1 erzielt. In ähnlicher Weise wurde eine solvothermale und reduktiv-katalytische Fragmentierung (SF-RCF) von BWS mit MeOH und MeTHF als Lösungsmittel durchgeführt. In diesem Fall wurde eine optimierte Gesamtmonomerausbeute von 247 mg gKL-1 gefunden.show moreshow less

Download full text files

  • SHA-512:6fabe5464cbdacc00b689976f90a4564c77e567c1aba2ea5a90200f9fa395425629d56a2531e4256a380eb4a7ee45cd19b99cb2268b274ae8bf865f998344d40

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Francesco BrandiORCiD
URN:urn:nbn:de:kobv:517-opus4-537660
DOI:https://doi.org/10.25932/publishup-53766
Reviewer(s):Markus AntoniettiORCiDGND, Helmut SchlaadORCiDGND, Bert SelsORCiDGND
Supervisor(s):Markus Antonietti, Helmut Schlaad
Publication type:Doctoral Thesis
Language:English
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/01/25
Release date:2022/02/11
Tag:Bioraffinerie; Strömungschemie; grüne Chemie; heterogene Katalyse; nachhaltige Chemie
biorefinery; flow chemistry; green chemistry; heterogeneous catalysis; sustainable chemistry
Number of pages:xii, 201
RVK - Regensburg classification:VN 9507, WF 9785
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.