• Treffer 2 von 4
Zurück zur Trefferliste

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

  • Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jie Yang, Markus GührORCiDGND, Theodore Vecchione, Matthew Scott RobinsonORCiD, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang
DOI:https://doi.org/10.1038/ncomms11232
ISSN:2041-1723
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27046298
Titel des übergeordneten Werks (Englisch):Nature Communications
Verlag:Nature Publ. Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Erscheinungsjahr:2016
Datum der Freischaltung:22.03.2020
Band:7
Seitenanzahl:9
Fördernde Institution:US Department of Energy (DOE) [DE-AC02-76SF00515]; DOE Office of Basic Energy Sciences Scientific User Facilities Division; SLAC UED/UEM Initiative Program Development Fund; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy; US Department of Energy Office of Science, Office of Basic Energy Sciences [DE-SC0003931]; National Science Foundation EPSCoR RII Track-2 CA Award [IIA-1430519]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.