• search hit 1 of 1
Back to Result List

Neue Polymermaterialien auf der Basis von funktionalisierten ionischen Flüssigkeiten zur potentiellen Anwendung in Membranen

New polymer materials based on functionalized ionic liquids for potential application in membranes

  • Die vorliegende Arbeit thematisiert die Synthese und Charakterisierung von neuen funktionalisierten ionischen Flüssigkeiten und deren Polymerisation. Die ionischen Flüssigkeiten wurden dabei sowohl mit polymerisierbaren Kationen als auch Anionen hergestellt. Zum einen wurden bei thermisch initiierten Polymerisationen Azobis(isobutyronitril) (AIBN) verwendet und zum anderen dienten bei photochemisch initiierten Polymerisationen Bis-4-(methoxybenzoyl)diethylgermanium (Ivocerin®) als Radikalstarter. Mittels Gelpermeationschromatographie konnte das Homopolymer Polydimethylaminoethylmethacrylat untersucht werden, welches erst im Anschluss an die GPC-Messungen polymeranalog modifiziert wurde. Dabei wurden nach einer Quaternisierung und anschließender Anionenmetathese bei diesen Polymeren die Grenzviskositäten bestimmt und mit den Grenzviskositäten der direkt polymerisierten ionischen Flüssigkeiten verglichen. Bei der direkten Polymerisation von Poly(N-[2-(Methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumbis(trifluormethylsulfonyl)imid)Die vorliegende Arbeit thematisiert die Synthese und Charakterisierung von neuen funktionalisierten ionischen Flüssigkeiten und deren Polymerisation. Die ionischen Flüssigkeiten wurden dabei sowohl mit polymerisierbaren Kationen als auch Anionen hergestellt. Zum einen wurden bei thermisch initiierten Polymerisationen Azobis(isobutyronitril) (AIBN) verwendet und zum anderen dienten bei photochemisch initiierten Polymerisationen Bis-4-(methoxybenzoyl)diethylgermanium (Ivocerin®) als Radikalstarter. Mittels Gelpermeationschromatographie konnte das Homopolymer Polydimethylaminoethylmethacrylat untersucht werden, welches erst im Anschluss an die GPC-Messungen polymeranalog modifiziert wurde. Dabei wurden nach einer Quaternisierung und anschließender Anionenmetathese bei diesen Polymeren die Grenzviskositäten bestimmt und mit den Grenzviskositäten der direkt polymerisierten ionischen Flüssigkeiten verglichen. Bei der direkten Polymerisation von Poly(N-[2-(Methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumbis(trifluormethylsulfonyl)imid) lag [η_Huggins] bei 100 mL/g und bei dem polymeranalog hergestellten Polymer betrug [η_Huggins] = 40 mL/g. Die ionischen Flüssigkeiten mit polymerisierbaren funktionellen Gruppen wurden mittels Photo-DSC hinsichtlich der maximalen Polymerisationsgeschwindigkeit (Rpmax), der Zeit, in der dieses Maximum erreicht wurde, tmax, ihrer Glasüberganstemperatur (Tg) und des Umsatzes an Vinylprotonen untersucht. Bei diesen Messungen wurde zum einen der Einfluss der unterschiedlichen Alkylkettenlänge am Ammoniumion und der Einfluss von verschiedenen Anionen bei gleichbleibender Kationenstruktur analysiert. So polymerisierte das ethylsubstituierte Kation mit einer tmax von 21 Sekunden am langsamsten. Die maximale Polymerisationsgeschwindigkeit (Rpmax) betrug 3.3∙10-2 s-1. Die tmax Werte der übrigen alkylsubstituierten ionischen Flüssigkeiten mit einer polymerisierbaren funktionellen Gruppe hingegen lagen zwischen 10 und 15 Sekunden. Die Glasübergangstemperaturen der mittels photoinduzierter Polymerisation hergestellten Polymere lagen mit 44 bis 55 °C nahe beieinander. Alle Monomere zeigten einen hohen Umsatz der Vinylprotonen; er betrug zwischen 93 und 100%. Mithilfe einer Bandanlage, ausgerüstet mit einer LED (λ = 395 nm), konnten Polymerfilme hergestellt werden. Der Umsatz an Doppelbindungsäquivalenten dieser Filme wurde anhand der 1H-NMR Spektroskopie bestimmt. Bei der dynamisch-mechanischen Analyse wurden die Polymerfilme mit einer konstanten Heizrate und Frequenz periodisch wechselnden Beanspruchungen ausgesetzt, um die Glasübergangstemperaturen zu bestimmen. Die niedrigste Tg mit 26 °C besaß das butylsubstituierte N-[2-(Methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumbis(trifluormethylsulfonyl)imid, welches als Polymerfilm mit Ivocerin® als Initiator hergestellt wurde, wohingegen die höchste Tg bei dem gleichen Polymer, welches direkt durch freie radikalische Polymerisation der ionischen Flüssigkeit in Masse mit AIBN hergestellt wurde, 51 °C betrug. Zusätzlich wurden die Filme unter dem Aspekt der Topographie mit einem Rasterkraftmikroskop untersucht, welches eine Domänenstruktur des Polymers N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammonium tris(pentafluorethyl)trifluorphosphat offenbarte.show moreshow less
  • This work focuses on the synthesis and characterization of novel functionalized ionic liquids and their polymerization. The structural differences were caused by both polymerizable cations and anions. Initiation of free radical polymerization was carried out either thermally or photoinduced. 2,2′-Azobis(2-methylpropionitrile) (AIBN) was used for thermal initiation of polymerization and bis-4-(methoxybenzoyl)diethylgermane (Ivocerin®) was used as photoinitiator for photopolymerization. Intrinsic viscosity was determined from ionic polymers, which were synthesized by bulk polymerization of ionic liquid monomers. Size exclusion chromatography was employed to determine the polydispersity of poly dimethylaminoethylmethacrylate, which was subsequently modified by quaternization and anion metathesis. After alkylation and metathesis of this polymer, intrinsic viscosity was also determined for the modified polymer. In the direct polymerization of poly(N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumThis work focuses on the synthesis and characterization of novel functionalized ionic liquids and their polymerization. The structural differences were caused by both polymerizable cations and anions. Initiation of free radical polymerization was carried out either thermally or photoinduced. 2,2′-Azobis(2-methylpropionitrile) (AIBN) was used for thermal initiation of polymerization and bis-4-(methoxybenzoyl)diethylgermane (Ivocerin®) was used as photoinitiator for photopolymerization. Intrinsic viscosity was determined from ionic polymers, which were synthesized by bulk polymerization of ionic liquid monomers. Size exclusion chromatography was employed to determine the polydispersity of poly dimethylaminoethylmethacrylate, which was subsequently modified by quaternization and anion metathesis. After alkylation and metathesis of this polymer, intrinsic viscosity was also determined for the modified polymer. In the direct polymerization of poly(N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammonium bis(trifluoromethylsulfonyl)imide), [η_Huggins] was 100 mL/g and in the analogously produced polymer [η_Huggins] was 40 mL/g. The investigation of ionic liquid monomers regarding the exposure to UV-light (λ = 395 nm) resulted in Photo-DSC measurements. These were employed to investigate the polymerization rate (Rpmax) and the corresponding time (tmax); these parameters describe the reactivity of the compounds. The influence of the different alkyl chain length was also examined. Conversion of double bonds was determined using NMR spectroscopy, and glass transition temperatures (Tg) were identified by DSC measurements. The same sample, which was used for Photo-DSC measurements, was also used for DSC measurements. The ionic liquid monomer with an ethyl group at the quaternized nitrogen polymerized slowest with a tmax value of 21 seconds. The corresponding polymerization rate (Rpmax) was 3.3∙10-2 s-1. The tmax values of the other alkyl-substituted ionic liquid monomers were between 10 and 15 seconds. The glass transition temperatures of those photochemically obtained polymers were close together: 44 – 55 °C. With 93 to 100% they all had a high conversion of double bonds in common. Polymer films were produced using a lab-sized conveyor system equipped with an LED (λ = 395 nm). The conversion of double bond equivalents of these films was determined by NMR spectroscopy. In dynamic mechanical analysis, the polymer films were subjected to periodically changing stresses at a constant heating rate and frequency to determine the glass transition temperatures. The lowest Tg of 26 °C was obtained with the butyl-substituted N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammonium bis-(trifluoromethylsulfonyl)imide prepared as a polymer film with Ivocerin® as initiator, whereas the highest Tg was 51 °C for the same polymer prepared directly by free radical polymerization of the ionic liquid in bulk with AIBN. In addition, the films were examined under the aspect of topography with an atomic force microscope, which revealed a domain structure of the polymer N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammonium tris(pentafluoroethyl)trifluorophosphate.show moreshow less

Download full text files

  • SHA-512:9086e0f5df4aff135d94efb8c28f29566597a0f8e889134965a5cfaa81f714158ba7dbf928fc0e170f299afd2dff8ae04ccf9c189f3ba504fac79e4f3927a1de

Export metadata

Metadaten
Author details:Pia Isabel KaestnerORCiD
URN:urn:nbn:de:kobv:517-opus4-509403
DOI:https://doi.org/10.25932/publishup-50940
Reviewer(s):Veronika StrehmelORCiDGND, André LaschewskyORCiDGND, Henning MenzelORCiDGND
Supervisor(s):Veronika Strehmel, André Laschewsky
Publication type:Doctoral Thesis
Language:German
Date of first publication:2021/06/24
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/03/25
Release date:2021/06/24
Tag:Gasselektive Membranen; Photoinduzierte Polymerisation; Polymere; Polymerfilme; Polymerisierbare ionische Flüssigkeiten
Gas selective membranes; Ionic liquid monomers; Polymer films; Polymers; photo induced polymerization
Number of pages:VI, 164
RVK - Regensburg classification:VE 7107
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
JEL classification:Z Other Special Topics
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.