• search hit 1 of 6
Back to Result List

Radio and infrared study of the star-forming region IRAS 20286+4105

  • In this paper, we present a multi wavelength investigation of the star-forming complex IRAS 20286+4105, located in the Cygnus X region. Near-infrared K-band data are used to revisit the cluster/stellar group identified in previous studies. Radio continuum observations at 610 and 1280 MHz show the presence of a H II region possibly powered by a star of spectral type B0-B0.5. The cometary morphology of the ionized region is explained by invoking the bowshock model, where the likely association with a nearby supernova remnant is also explored. A compact radio knot with a non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus X region show the presence of six Class I young stellar objects inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be similar toIn this paper, we present a multi wavelength investigation of the star-forming complex IRAS 20286+4105, located in the Cygnus X region. Near-infrared K-band data are used to revisit the cluster/stellar group identified in previous studies. Radio continuum observations at 610 and 1280 MHz show the presence of a H II region possibly powered by a star of spectral type B0-B0.5. The cometary morphology of the ionized region is explained by invoking the bowshock model, where the likely association with a nearby supernova remnant is also explored. A compact radio knot with a non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus X region show the presence of six Class I young stellar objects inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be similar to 175 and 30 M-circle dot. The mass-radius relation and the surface density of the clumps mean that they do not qualify as massive star-forming sites. An overall picture of a runaway star ionizing the cloud and a triggered population of intermediatemass, Class I sources located towards the cloud centre emerges from this multiwavelength study. Variation in the dust emissivity spectral index is shown to exist in this region and is seen to have an inverse relation with the dust temperature.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Varsha RamachandranORCiDGND, S. R. Das, A. Tej, S. Vig, S. K. Ghosh, D. K. Ojha
DOI:https://doi.org/10.1093/mnras/stw2906
ISSN:0035-8711
ISSN:1365-2966
Title of parent work (English):Monthly notices of the Royal Astronomical Society
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2016/11/17
Publication year:2017
Release date:2022/06/23
Tag:H II regions; ISM: individual objects: IRAS 20286+4105; radio continuum: ISM; stars: formation
Volume:465
Issue:4
Number of pages:19
First page:4753
Last Page:4771
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.